Performance Analysis of Different Adaptive Algorithms for Equalization
Keywords:
LMS, NLMS, RLS, Adaptive filtering, Convergence rate.Abstract
The major problems in wireless communication are time dispersion and inter symbol interference. In order to
cancel out the effect introduced by the unknown channel and to recover the original signal as from the distorted
signal, a channel equalizer is required to compensate the effect of channel distortion, time variation and can adapt
it-self to the changes in channel characteristics. The equalizers are expected to have fast convergence rate in
communication systems which is difficult to achieve with conventional adaptive algorithms. LMS is widely used
because it is simple and robust, but performs poor in terms of convergence rate. NLMS is an improved version of
LMS and provides better convergence. RLS exhibit best performance but complex and unstable. In this paper we
simulated adaptive algorithms such as LMS, NLMs and RLS algorithms in MATLAB and compared their
performance
Downloads
References
Barry, J. R., Lee, E. A., & Messerschmitt, D. G. (2004). Digital communication. Springer Science & Business
Media.
Borisagar, K. R., & Kulkarni, D. G. (2010). Simulation and comparative analysis of LMS and RLS algorithms
using real time speech input signal. Global Journal of Research in Engineering, 10(5).
Eleftheriou, E., & Falconer, D. (1986). Tracking properties and steady-state performance of RLS adaptive filter
algorithms. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34(5), 1097-1110.
Haykin, S. S. (2008). Adaptive filter theory. Pearson Education India.
Haykin, S., & Moher, M. (2007). Introduction to Analog & Digital Communications, Hoboken.
Ifeachor, E. C., & Jervis, B. W. (2002). Digital signal processing: a practical approach. Pearson Education.
Razzak, I. (2015). Adaptive filtering algorithms for channel equalization in wireless communication. Indian
Journal of Science and Technology, 8(17).
Reddy, B. S., & Krishna, V. R. (2013, October). Implementation of Adaptive Filter Based on LMS Algorithm.
In International Journal of Engineering Research and Technology, 2(10) (October-2013)). ESRSA Publications.
Tato, L. M., & Miranda, H. C. (2002). Simulation of an RLS Adaptive Equalizer using Simulink.