Molecular Drug Targets in Candida glabrata
Keywords:
Candida glabrata, Molecular Target, Drug Target, Kre1, Kre2, Cch1, Mid1, Cdr1, Rox1, Upc2B.Abstract
Incidence of candidiasis has increased in past decade. Epidemiology is reported shifting from albicans to non-
albicans Candida (NAC) species like C. glabrata, which is intrinsically resistant to azole drugs. No new
antifungal has come into practice from last decade. Rising resistance to existing antifungal (in clinical isolates of
Candida) have necessitated the need for new antifungals. New molecular drug targets need to be explored for
the development of novel antifungal drugs. The drug targets are oftenly the cellular proteins of various
metabolic pathways (like ergosterol synthesis-, cell wall biogenesis-, calcium-calcineurin- and DNA checkpoint
pathways etc.), having no significant similarity with host proteins to overrule the possibility of side effects. In
this review, some potential proteins of C. glabrata and their pathways are discussed in context to explore their
potential as drug target for antifungal drug development.
Downloads
References
Akins, R. A. (2005). An update on antifungal targets and mechanisms of resistance in Candida albicans.
Medical Mycology, 43(4), 285-318.
Al Thaqafi, A. H., Farahat, F. M., Al Harbi, M. I., Al Amri, A. F., & Perfect, J. R. (2014). Predictors and
outcomes of Candida bloodstream infection: eight-year surveillance, western Saudi Arabia. International Journal
of Infectious Diseases, 21, 5-9.
Journal of Graphic Era University
Vol. 5, Issue 2, 112-130, 2017
ISSN: 0975-1416 (Print), 2456-4281 (Online)
Alcasabas, A. A., Osborn, A. J., Bachant, J., Hu, F., Werler, P. J., Bousset, K., Furuya, K., Diffley, J. F., Carr,
A. M., & Elledge, S. J. (2001). Mrc1 transduces signals of DNA replication stress to activate Rad53. Nature Cell
Biology, 3(11), 958-965.
Anand, J., Semwal, P., Gautam, P., Thapliyal, A., & Rai, N. (2015). Prediction of novel drug targets in
Ergosterol biosynthesis pathway: a proposed mechanism of anticandidal activity of green tea phyto compounds.
Journal of Chemical and Pharmaceutical Research, 7(2), 672-684.
Arthington, B. A., Bennett, L. G., Skatrud, P. L., Guynn, C. J., Barbuch, R. J., Ulbright, C. E., & Bard, M.
(1991). Cloning, disruption, and sequence of the gene encoding yeast C-5 sterol desaturase. Gene, 102(1), 39–
Balasubramanian, B., Lowry, C. V., & Zitomer, R. S. (1993). The Rox1 repressor of the Saccharomyces
cerevisiae hypoxic genes is a specific DNA-binding protein with a high-mobility-group motif. Molecular and
Cellular Biology, 13(10), 6071–6078.
Bard, M., Bruner, D. A., Pierson, C. A., Lees, N. D., Biermann, B., Frye, L., Koegel, C., & Barbuch, R. (1996).
Cloning and characterization of ERG25, the Saccharomyces cerevisiae gene encoding C-4 sterol methyl
oxidase. Proceedings of the National Academy of Sciences U S A, 93(1), 186-190.
Bard, M., Lees, N. D., Turi, T., Craft, D., Cofrin, L., Barbuch, R., Koegel, C., & Loper, J. C. (1993). Sterol
synthesis and viability of erg11 (cytochrome P450 lanosterol demethylase) mutations in Saccharomyces
cerevisiae and Candida albicans. Lipids, 28(11), 963–967.
Belardetti, F., & Zamponi, G. W. (2012). Calcium channels as therapeutic targets. Wiley Interdisciplinary
Reviews: Membrane Transport and Signaling, 1(4), 433–451.
Berridge, M. J., Bootman, M. D., & Roderick, H. L. (2003). Calcium signalling: dynamics, homeostasis and
remodelling. Nature Reviews Molecular Cell Biology, 4(7), 517-529.
Bonilla, M., & Cunningham, K. W. (2003). Mitogen-activated Protein Kinase stimulation of Ca2+ signaling is
required for survival of endoplasmic reticulum stress in yeast. Molecular Biology of Cell, 14(10), 4296–4305.
Boone, C., Sommer, S. S., Hensel, A., & Bussey, H. (1990). Yeast KRE genes provide evidence for a pathway
of cell wall beta-glucan assembly. Journal of Cell Biology, 110(5), 1833–1843.
Bossche, V. H. (1985). Biochemical targets for antifungal azole derivatives: hypothesis on the mode of action.
In M. R. McGinnis (ed.), Current Topics in Medical Mycology, Springer-Verlag, New York, 1, 313–351.
Bossche, V. H., Willemsens, G., & Marshall, P. (1987). Anti-Candida drugs—the biochemical basis for their
action. Critical Reviews in Microbiology, 15(1), 57–72.
Breining, F., Schleinkofer, K., & Schmitt, M. J. (2004). Yeast Kre1p is GPI-anchored and involved in both cell
wall assemble and architecture. Microbiology, 150(10), 3209-3218.
Burchmore, R. J., Wallace, L. J., Candlish, D., Al-Salabi, M. I., Beal, P. R., Barrett, M. P., Baldwin, S. A., & De
Koning, H. P. (2003). Cloning, heterologous expression, and in situ characterization of the first high affinity
nucleobase transporter from a protozoan. Journal of Biological Chemistry, 278(26), 23502–23507.
Calendrone, R. A., & Cihlar, R. L. (2002). Fungal pathogenesis: principles and clinical applications. Marcel
Dekker, Inc. New York, Basel, 14, 1-24.
Catterall, W. A. (2011). Voltage-gated calcium channel. Cold Spring Harbor Perspectives in Medicine, 3(8), 1-
Chaffin, W. L. (2008). Candida albicans cell wall proteins. Microbiology and Molecular Biology Review,
(3), 495–544.
Journal of Graphic Era University
Vol. 5, Issue 2, 112-130, 2017
ISSN: 0975-1416 (Print), 2456-4281 (Online)
Chaffin, W. L., Lopez-Ribot, J. L., Casanova, M., Gozalbo, D., & Martinez, J. P. (1998). Cell wall and secreted
proteins of Candida albicans: identification, function, and expression. Microbiology and Molecular Biology
Reviews, 62(1), 130-180.
Chiu, Y. T., Liu, J., Tang, K., Wong, Y. C., Khanna, K., & Ling, M. T. (2012). Inactivation of ATM/ATR DNA
damage check point promotes androgen induced chromosomal instability in prostate epithelial cells. Plos One,
(12), 1-12.
Clarke, M., Lohan, A. J., Liu, B., Lagkouvardos, I., Roy, S., Zafar, N., Bertelli, C., Schilde, C., Kianianmomeni,
A., Burglin, T. R., Frech, C., Turcotte, B., Kopec, K. O., Synnott, J. M., Choo, C., Paponov, I., Finkler, A., Tan,
C. S. H., Hutchins, A. P., Weinmeier, T., Rattei, T., Chu, J. S. C., Gimenez, G., Irimia, M., Rigden, D. J.,
Fitzpatrick, D. A., Lorenzo-Morales, J., Bateman, A., Chiu, C. H., Tang, P., Hegemann, P., Fromm, H., Raoult,
D., Greub, G., Miranda-Saavedra, D., Chen, N., Nash, P., Ginger, M. L., Horn, M., Schaap, P., Caler, L., &
Loftus, B. J. (2013). Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early
evolution of tyrosine kinase signaling. Genome Biology, 14(2), 1-14.
Clerici, M., Paciotti, V., Baldo, V., Romano, M., Lucchini, G., & Longhese, M. P. (2001). Hyperactivation of
the yeast DNA damage checkpoint by TEL1 and DDC2 overexpression. EMBO Journal, 20(22), 6485–6498.
Cormack, B. P., Chori, N., & Falkow, S. (1999). An adhesin of the yeast pathogen Candida glabrata mediating
adherence to human epithelial cells. Science, 285(5427), 578-582.
Cueller-Cruz, M., Briones-Martin-del-Campo, M., Canas-Villamar, I., Montalvo-Arredondo, J., Riego-Ruiz, L.,
Castano, I., & De Las Penas, A. (2008). High Resistance to oxidative stress in the fungal pathogen Candida
glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p,
Msn2p, and Msn4p. Eukaryotic Cell, 7(5), 814-825.
Dastidar, R. G., Hooda, J., Shah, A., Cao, T. M., Henke, R. M., & Zhang, L. (2012). The nuclear localization of
SWI/SNF proteins is subjected to oxygen regulation. Cell Bioscience, 2(1), 1-13.
De Las Peñas, A., Pan, S. J., Castaño, I., Alder, J., Cregg, R., & Cormack, B. P. (2003). Virulence-related
surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject
to RAP1-and SIR-dependent transcriptional silencing. Genes and Development, 17(18), 2245-2258.
De Risi, J., Van Den Hazel, B., Marc, P., Balzi, E., Brown, P., Jacq, C., & Goffeau, A. (2000). Genome
microarray analysis of transcriptional activation in multidrug resistance yeast mutants. FEBS Letters, 470(2),
–160.
De-Castro, P. A., Chiaratto, J., Winkelstroter, L. K., Pedro Bom, V. L., Ramalho, L. N. Z., Goldman, M. H. S.,
Brown, N. A., & Goldman, G. H. (2014). The involvement of the Mid1/Cch1/Yvc1 calcium channels in
Aspergillus fumigatus virulence. Plos One, 9(8), 1-12.
Deckert, J., Torres, A. M. R., Simon, J. T., & Zitomer, R. S. (1995). Mutational analysis of Rox1, a DNA-
bending repressor of hypoxic genes in Saccharomyces cerevisiae. Molecular and Cellular Biology, 15(11),
-6117.
Del Aguila, E. M., Silva, J. T., & Paschoalin, V. M. F. (2003). Expression of the yeast calcineurin subunits
CNA1 and CNA2 during growth and hyper-osmotic stress. FEMS Microbiology Letters, 221(2), 197–202.
Delahodde, A., Pandjaitan, R., Corral-Debrinski, M., & Jacq, C. (2001). Pse1/Kap121-dependent nuclear
localization of the major yeast multidrug resistance (MDR) transcription factor Pdr1. Molecular Microbiology,
(2), 304–313.
Ding, X., Yu, Q., Xu, N., Wang, Y., Cheng, X., Qian, K., Zhao, Q., Zhang, B., Xing, L., & Li, M. (2013). Ecm7,
a regulator of HACS, functions in calcium homeostasis maintenance, oxidative stress response and hyphal
development in Candida albicans. Fungal Genetics and Biology, 57, 23-32.
Journal of Graphic Era University
Vol. 5, Issue 2, 112-130, 2017
ISSN: 0975-1416 (Print), 2456-4281 (Online)
Dupont, S., Lemetais, G., Ferreira, T., Cayot, P., Gervais, P., & Beney, L. (2012). Ergosterol biosynthesis: a
fungal Pathway for life on land. Evolution, 66(9), 2961-2968.
Gachotte, D., Pierson, C. A., Lees, N. D., Barbuch, R., Koegel, C., & Bard, M. (1997). A yeast sterol auxotroph
(erg25) is rescued by addition of azole antifungals and reduced levels of heme. Proceedings of the National
Academy of Sciences U S A, 94(21), 11173–11178.
Geber, A., Hitchcock, C. A., Swartz, J. E., Pullen, F. S., Marsden, K. E., Kwon-Chung, K. J., & Bennett, J. E.
(1995). Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol
composition, and antifungal susceptibility. Antimicrobial Agents and Chemotherapy, 39(12), 2708-2717.
Gil-Bona, A., Reales-Calderon, J. A., Parra-Giraldo, C. M., Martinez-Lopez, R., Monteoliva, R., & Gil, C.
(2016). The cell wall protein Ecm33 of Candida albicans is involved in chronological life span, morphogenesis,
cell wall regeneration, stress tolerance and host–cell interaction. Frontiers in Microbiology, 7, 1-14.
Giri, S., & Kindo, A. J. (2012). A review of Candida species causing blood stream infection. Indian Journal of
Medical Microbiology, 30(3), 270-278.
Gleason, J. E., Corrigan, D. J., Cox, J. E., Reddi, A. R., McGinnis, L. A., & Culotta, V. C. (2011). Analysis of
Hypoxia and Hypoxia-Like States through Metabolite Profiling. Plos One, 6(9), 1-13.
Golin, J., Ambudkar, S. V., & May, L. (2007). The yeast Pdr5p multidrug transporter: how does it recognize so
many substrates? Biochemical and Biophysical Research Communication, 356(1), 1-5.
Gozalbo, D., Roig, P., Villamon, E., & Gil, M. L. (2004). Candida and Candidiasis: The cell wall as a potential
molecular target for antifungal therapy. Current Drug Targets- Infectious Disorders, 4(2), 117-135.
Grahl, N., & Cramer Jr, R. A. (2010). Regulation of hypoxia adaptation: an overlooked virulence attribute of
pathogenic fungi. Medical Mycology, 48(1), 1-15.
Guinea, J. (2014). Global trends in the distribution of Candida species causing candidemia. Clinical
Microbiology and Infections, 20(s6), 5-10.
Gupta, P., Chanda, R., Rai, N., Kataria, V. K., & Kumar, N. (2016). Antihypertensive, amlodipine besilate
inhibits growth an biofilm of human fungal pathogen Candida. Assay and Drug Development Technologies, 14
(5), 291-297.
Harren, K., & Tudzynski, B. (2013). Cch1 and Mid1 are functionally required for vegetative growth under low-
calcium conditions in the phytopathogenic ascomycetes Botrytis cinerea. Eukaryotic Cell, 12(5), 712-724.
Hill, K., Boone, C., Goebl, M., Puccia, R., Sdicu, A., & Bussey, H. (1992).Yeast KRE2 defines a new gene
family encoding probable secretory proteins, and is required for the correct N-glycosylation of proteins.
Genetics, 130(2), 273-283.
Hong, M. P., Vu, K., Bautos, J., & Gelli, A. (2010). Cch1 restores intracellular Ca2+ in fungal cells during
endoplasmic reticulum stress. Journal of Biological Chemistry, 285(14), 10951-10958.
Iida, H., Nakamura, H., Ono, T., Okumura, M. S., & Anraku, Y. (1994). MID1, a novel Saccharomyces
cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Molecular and
Cell Biology, 14(12), 8259-8271.
Johnson, M. K. (1998). Iron-sulfur proteins: new roles for old clusters. Current Opinion in Chemical Biology,
(2), 173-181.
Johnston, M. (1987). A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae.
Microbiology Review, 51(4), 458–476.
Journal of Graphic Era University
Vol. 5, Issue 2, 112-130, 2017
ISSN: 0975-1416 (Print), 2456-4281 (Online)
Kadosh, D., & Johnson, A. D. (2001). Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator
Rox1, controls filamentous growth and virulence in Candida albicans. Molecular and Cell Biology, 21(7),
-2505.
Kalb, V. F., Woods, C. W., Dey, C. R., Sutter, T. R., Turi, T. G., & Loper, J. C. (1987). Primary structure of the
P450 lanosterol demethylase gene from Saccharomyces cerevisiae. DNA, 6(6), 529–537.
Kaur, R., Castano, I., & Cormack, B. P. (2004). Functional Genomic analysis of fluconazole susceptibility in the
pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. Antimicrobial Agents and
Chemotherapy, 48(5), 1600–1613.
Kaur, R., Goyal, R., Dhakad, M. S., Bhalla, P., & Kumar, R. (2014). Epidemiology and virulence determinants
including biofilm profile of candida infections in an ICU in a tertiary hospital in India. Journal of Mycology,
, 1-8.
Kenna, S., Bligh, H. F. J., Watson, P. F., & Kelly, S. L. (1989). Genetic and physiological analysis of azole
sensitivity in Saccharomyces cerevisiae. Journal of Medical and Veterinay Mycology, 27(6), 397–406.
Keogh, M. C., Kim, J. A., Downey, M., Fillingham, J., Chowdhury, D., Harrison, J. C., Onishi, M., Datta, N.,
Galicia, S., Emili, A., Lieberman, J., Shen, X., Buratowski, S., Haber, J. E., Durocher, D., Greenblatt, J. F., &
Krogan N. J. (2006). A phosphatase complex that dephosphorylates hamma H2AX regulates DNA damage
checkpoint recovery. Nature, 439(7075), 497-501.
Khalaf, R. A., & Zitomer, R. S. (2001). The DNA binding protein Rfg1 is a repressor of filamentation in
Candida albicans. Genetics, 157(4), 1503-1512.
Kispal, G., Csere, P., Guiard, B., & Lill, R. (1997). The ABC transporter Atm1p is required for mitochondrial
iron homeostasis. FEBS Letter, 418(3), 346-350.
Kispal, G., Csere, P., Prohl, C., & Lill, R. (1999). The mitochondrial proteins Atm1p and Nfs1p are essential for
biogenesis of cytosolic Fe/S proteins. The EMBO Journal, 18(14), 3981-3989.
Kolodner, R. D., Putnam, C. D., & Myung, K. (2002). Maintenance of genome stability in Saccharomyces
cerevisiae. Science, 297(5581), 552-557.
Kraus, P. R., Nicholas, C. B., & Heitman, J. (2005). Calcium and calcineurin-independent roles for calmodulin
in Cryptococcus neoformans morphogenesis and high-temperature growth. Eukaryotic Cell, 4(6), 1079-1087.
Landl, K. M., Klosch, B., & Turnowsky, F. (1996). ERG1, encoding squalene epoxidase, is located on the right
arm of chromosome VII of Saccharomyces cerevisiae. Yeast, 12(6), 609-613.
Leber, R., Landl, K., Zinser, E., Ahorn, H., Spok, A., Kohlwein, S. D., Turnowsky, F., & Daum, G. (1998).
Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic
reticulum and lipid particles. Molecular Biology of Cell, 9(2), 375-86.
Lee, J. H., Xu, B., Lee, C. H., Ahn, J. Y., Song, M. S., Lee, H., Canman, C. E., Lee, J. S., Kastan, M. B., & Lim,
D. S. (2003). Distinct functions of nijmegen breakage syndrome in ataxia telangiectasia mutated-dependent
responses to DNA damage. Molecular Cancer Research, 1(9), 674-681.
Leighton, J., & Schatz, G. (1995). An ABC transporter in the mitochondrial inner membrane is required for the
normal growth of yeast. EMBO Journal, 14(1), 188-195.
Lenardon, M. D., Munro, C. A., & Gow, N. A. R. (2010). Chitin synthesis and fungal pathogenesis. Current
Opinion in Microbiology, 13(4), 416–423.
Lesage, G., & Bussey, H. (2006). Cell wall assembly in Saccharomyces cerevisiae. Molecular Biology Review,
(2), 317-343.
Journal of Graphic Era University
Vol. 5, Issue 2, 112-130, 2017
ISSN: 0975-1416 (Print), 2456-4281 (Online)
Liang, Y., Zhang, B., Zheng, W., Xing, L., & Li, M. (2011). Alkaline stress triggers an immediate calcium
fluctuation in Candida albicans mediated by Rim101p and Crz1p transcription factors. FEMS Yeast Research,
(5), 430-439.
Lindsay, M. A. (2003). A review on target discovery. Nature Reviews Drug Discovery, 2(10), 831-838.
Lipke, P. N., & Ovalle, R. (1998). Cell wall architecture in yeast: new structure and new challenges. Journal of
Bacteriology, 180(15), 3735–3740.
Liu, S., Hou, Y., Liu, W., Lu, C., Wang, W., & Sun, S. (2015). Components of the calcium-calcineurin signaling
pathway in fungal cells and their potential as antifungal targets. Eukaryotic Cell, 14(4), 324-334.
Liu, S., Yue, L., Gu, W. Li, X., Zhang, L., & Sun, S. (2016). Synergistic effect of fluconazole and calcium
channel blockers against resistant Candida albicans. Plos One, 11(3), 1-12.
Lowman, D. W., West, L. J., Bearden, D. W., Wempe, M. F., Power, T. D., Ensley, H. E., Haynes, K.,
Williams, D. L., & Kruppa, M. D. (2011). New insights into the structure of (1R3, 1R6)-β-D-glucan side chains
in the Candida glabrata cell wall. Plos One, 6(11), 1-10.
Lowry, C. V., & Zitomer, R. S. (1984). Oxygen regulation of anaerobic and aerobic genes mediated by a
common factor in yeast. Proceedings in National Academy of Science USA, 81(19), 6129–6133.
Luan, Y., Matsuura, I., Yazawa, M., Nakamura, T., & Yagi, K. (1987). Yeast calmodulin: structural and
functional differences compared with vertebrate calmodulin. Journal of Biochemistry, 102(6), 1531-1537.
Lussier, M., Sdicu, A., Winnett, E., Vo, D. H., Sheraton, J., Dusterhoft, A., Storms, R. K., & Bussey, H. (1997).
Completion of the Saccharomyces cerevisiae genome sequence allows identification of KTR5, KTR6 and KTR7
and definition of the nine-membered KRE2/MNT1 mannosyltransferase gene family in this organism. Yeast,
(3), 267-274.
Lustig, A. J., & Petes, T. D. (1986). Identification of yeast mutants with altered telomere structure. Proceedings
in National Acadamy of Science USA, 83(5), 1398–1402.
MacPherson, S., Larochelle, M., & Turcotte, B. (2006). A fungal family of transcriptional regulators: the zinc
cluster proteins. Microbiology and Molecular Biology Review, 70(3), 583–604.
Mamnun, Y. M., Pandjaitan, R., Mahe, Y., Delahodde, A., & Kuchler, K. (2002). The yeast zinc finger
regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo.
Molecular Microbiology, 46(5), 1429–1440.
Marie, C., Leyde, S., & White, T. C. (2008). Cytoplasmic localization of sterol transcription factors Upc2p and
Ecm22p in S. cerevisiae. Fungal Genetics and Biology, 45(10), 1430-1438.
Martin, D. C., Kim, H., Mackin, N. A., Maldonado-Baez, L., Evangelista, Jr. C. C., Beaudry, V. G., Dudgeon,
D. D., Naiman, D. Q., Erdman, S. E., & Cunningham, K. W. (2011). New regulators of a high affinity Ca2+
influx system revealed through a genome-wide screen in yeast. Journal of Biological Chemistry, 286(12),
-10754.
Mulu, A., Kassu, A., Anagaw, B., Moges, B., Gelaw, A., Alemayehu, M., Belyhun, Y., Biadglegne, F., Hurissa,
Z., Moges, F., & Isogai, E. (2013). Frequent detection of ‘azole’ resistant Candida species among late presenting
AIDS patients in northwest Ethiopia. BMC Infectious Disease, 13(1), 1-10.
Nagi, M., Nakayama, H., Tanabe, K., Bard, M., Aoyama, T., Okano, M., Higashi, S., Ueno, K., Chibana, H.,
Niimi, M., Yamagoe, S., Umeyama, T., Kajiwara, S., Ohno, H., & Miyazaki, Y. (2011). Transcription factors
CgUPC2A and CgUPC2B regulate ergosterol biosynthetic genes in Candida glabrata. Genes Cells, 16(1), 80-
Journal of Graphic Era University
Vol. 5, Issue 2, 112-130, 2017
ISSN: 0975-1416 (Print), 2456-4281 (Online)
Nakayama, H., Nakayama, N., Arisawa, M., & Aoki, Y. (2001). In vitro and in vivo effects of 14alpha-
demethylase (ERG11) depletion in Candida glabrata. Antimicrobial Agents and Chemotherapy, 45(11), 3037-
Nobile, C. J., & Johnson, A. D. (2015). Candida albicans biofilms and human disease. Annual Review in
Microbiology, 69, 71-92.
O'Neill, B. M., Szyjka, S. J., Lis, E. T., Bailey, A. O., Yates, J. R., Aparicio, O. M., & Romesberg, F. E. (2007).
Pph3-Psy2 is a phosphates complex required for Rad53 dephosphorylation and replication fork restart during
recovery from DNA damage. Proceedings in National Academy Science USA, 104(22), 9290-9295.
Osborn, A. J., & Elledge, S. J. (2003). Mrc1 is a replication fork component whose phosphorylation in response
to DNA replication stress activates Rad53. Genes Development, 17(14), 1755-1767.
Pardo, M., Monteoliva, L., Vazquez, P., Martınez, R., Molero, G., Nombela, C., & Gil, C. (2004). PST1 and
ECM33 encode two yeast cell surface GPI proteins important for cell wall integrity. Microbiology, 150(12),
–4170.
Parks, L. W., & Casey, W. M. (1995). Physiological implications of sterol biosynthesis in yeast. Annual Review
in Microbiology, 49(1), 95–116.
Paul, S., & Moye-Rowley, W. S. (2014). Multidrug resistance in fungi regulation of transporter encoding gene
expression. Frontiers in Physiology, 5, 1-14.
Paul, S., Schmidt, J. A., & Moye-Rowley, W. S. (2011). Regulation of the CgPdr1 transcription factor from the
pathogen Candida glabrata. Eukaryotic Cell, 10(2), 187–197.
Paulsen, R. D., & Cimprich, K. A. (2007). The ATR pathway: fine-tuning the fork. DNA Repair, 6(7), 953-966.
Pfaller, M. A., & Diekema, D. J. (2010). Epidemeology of invasive mycoses in North America. Critical Review
in Microbiology, 36(1), 1-53.
Pierce, C. G., & Lopez-Ribot, J. L. (2013). Candidiasis drug discovery and development: new approaches
targeting virulence for discovering and identifying new drugs. Expert Opinion in Drug Discovery, 8(9), 1117-
Prasad, R., & Goffeau, A. (2012). Yeast ATP-binding cassette transporters conferring multidrug resistance.
Annual Review in Microbiology, 66, 39–63.
Prasad, R., Banerjee, A., Khandelwal, N. K., & Dhamgaye, S. (2015). The ABCs of Candida albicans multidrug
transporter Cdr1. Eukaryotic Cell, 14(12), 1154-1164.
Putnam, C. D., Hayes, T. K., & Kolodner, R. D. (2010). Post-replication repair suppresses duplication-mediated
genome instability. PLoS Genetics, 6(5), 1-11.
Putnam, C. D., Jaehnig, E. J., & Kolodner, R. D. (2009). Perspectives on the DNA damage and replication
checkpoint responses in Saccharomyces cerevisiae. DNA Repair, 8(9), 974–982.
Raleigh, J. M., & O'Connell, M. J. (2000). The G (2) DNA damage checkpoint targets both Wee1 and Cdc25.
Journal of Cell Science, 113(10), 1727-1736.
Ritchie, K. B., Mallory, J. C., & Petes, T. D. (1999). Interactions of TLC1 (which encodes the RNA sub-unit of
telomeres), TEL1 and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae. Molecular
and Cell Biology, 19(9), 6065-6075.
Roemer, T., & Bussey, H. (1995). Yeast Kre1p is a cell surface O-glycoprotein. Molecular and General
Genetics, 249(2), 209-216.
Roemer, T., Jiang, B., Davison, J., Ketela, T., Veillette, K., Breton, A., Tandia, F., Linteau, A., Sillaots, S.,
Marta, C., Martel, N., Veronneau, S., Lemieux, S., Kauffman, S., Becker, J., Storms, R., Boone, C., & Bussey,
Journal of Graphic Era University
Vol. 5, Issue 2, 112-130, 2017
ISSN: 0975-1416 (Print), 2456-4281 (Online)
H. (2003). Large-scale essential gene identification in Candida albicans and applications to antifungal drug
discovery. Molecular Microbiology, 50(1), 167-181.
Ruiz-Herrea, J. (1992). Fungal cell wall: structure, synthesis and assembly. CRC press: Boca Raton, 1992, 59-
Sanchez, Y., Bachant, J., Wang, H., Hu, F., Liu, D., Tetzlaff, M., & Elledge, S. J. (1999). Control of the DNA
damage check point by chk1 and rad53 protein kinases through distinct mechanisms. Science, 286(5442), 1166-
Sangamwar, A. T., Deshpande, U. D., & Pekamwar, S. S. (2008). Antifungals: need to search for a new
molecular target. Indian Journal of Pharmaceutical Science, 70(4), 423-430.
Sanglard, D., Ischer, F., Calabrese, D., Majcherczyk, P. A., & Bille, J. (1999). The ATP binding cassette
transporter gene CgCDR1 from Candida glabrata is involved in the ressitance of clinical isolates to azole
antifungal agents. Antimicrobial Agents and Chemotherapy, 43(11), 2753-2765.
Sanjuán, R., Stock, R., De Mora, J. F., & Sentandreu, R. (1995). Identification of glucan-mannoprotein
complexes in the cell wall of Candida albicans using a monoclonal antibody that reacts with a (1, 6)-P-glucan
epitope. Microbiology, 141(7), 1545-1551.
Sanvisens, N., De.Llanos, R., & Puig, S. (2013). Function and regulation of yeast ribonucleotide reductase: cell
cycle, genotoxic stress, and iron bioavailability. Biomedical Journal, 36(2), 51-58.
Saunders, G. W., & Rank, G. H. (1982). Allelism of pleiotropic drug resistance in S. cerevisiae. Canadian
Journal of Genetics and Cytology, 24(5), 493–503.
Schjerling, P., & Holmberg, S. (1996). Comparative amino acid sequence analysis of the C6 zinc cluster family
of transcriptional regulators. Nucleic Acids Research, 24(23), 4599–4607.
Spitzer, M., Griffiths, E., Blakley, K. M., Wildenhain, J., Ejim, L., Rossi, L., De Pascele, G., Curak, J., Brown,
E., Tyers, M., & Wright, G. D. (2011). Cross-species discovery of syncretic drug combination that potentiate the
antifungal fluconazole. Molecular and Systematic Biology, 7(1), 499-513.
Sturgeon, C. M., Kemmer, D., Anderson, H. J., & Roberge, M. (2006). A review on yeast as a tool to uncover
the cellular targets of drugs. Biotechnology Journal, 2006 1(3), 289–298.
Stylianou, M., Kulessliy, E., Lopes, J. P., Granlund, M., Wennerberg, K., & Urban, C. F. (2014). Antifungal
application of nonantifungal drugs. Antimicrobial Agents and Chemotherapy, 58(2), 1055-1062.
Synnott, J. M., Guida, A., Mulhern-Haughey, S., Higgins, D. G., & Butler, G. (2010). Regulation of the hypoxic
response in Candida albicans. Eukaryotic Cell, 9(11), 1734–1746.
Szyjka, S. J., Aparicio, J. G., Viggiani, C. J., Knott, S., Xu, W., Tavare, S., & Aparicio, O. M. (2008). RAd53
reglates replication fork restart after DNA damage in Saccharomyces cerevisiae. Genes Development, 22(14),
-1920.
Tada,T., Ohmori, M., & Iida, H. (2003). Molecular dissection of the hydrophobic segments H3 and H4 of the
yeast Ca2+ channel component Mid1. Journal of Biological Chemistry, 278(11), 9647-9654.
Tak, V., Mathur, P., Varghese, P., Gunjiyal, J., Xess, I., & Misra, M. C. (2014). The epidemiological profile of
Candidemia at an Indian trauma care center. Journal of Labouratory Physicians, 6(2), 96-101.
Taylor, F. R., Rodriguez, R. J., & Parks, L. W. (1983). Requirement for a second sterol biosynthetic mutation
for viability of a sterol C-14 demethylation defect in Saccharomyces cerevisiae. Journal of Bacteriology, 155(1),
–68.
Teng, J. F., Goto, R., Iida, K., Kojima, I., & Iida, H. (2008). Ion-channel blocker sensitivity of voltage-gated
calcium-channel homologue Cch1 in Saccharomyces cerevisiae. Microbiology, 154(12), 3775-3781.
Journal of Graphic Era University
Vol. 5, Issue 2, 112-130, 2017
ISSN: 0975-1416 (Print), 2456-4281 (Online)
Teng, J., Iida, K., Imai, A., Nakano, M., Tada, T., & Iida, H. (2013). Hyperactive and hypoactive mutations in
Cch1, a yeast homologue of the voltage-gated calcium-channel pore-forming subunit. Microbiology, 159(5),
-979.
Terashima, H., Hamada, K., & Kitada, K. (2003). The localization change of Ybr078w/Ecm33, a yeast GPI-
associated protein, from the plasma membrane to the cell wall, affecting the cellular function. FEMS
Microbiology Letters, 218(1), 175-180.
Thompson, D. S., Carlisle, P. L., & Kadosh, D. (2011). Coevolution of morphology and virulence in Candida
Species. Eukaryotic Cell, 10(9), 1173–1182.
Ton, V. K., & Rao, R. (2004). Functional expression of heterologous proteins in yeast: insights into Ca2+
signaling and Ca2+ -transporting ATPases. American Journal of Physiology and Cell Physiology, 287(3), C580-
C589.
Tsai, H. F., Bard, M., Izumikawa, K., Krol, A. A., Sturm, A. M., Culbertson, N. T., Pierson, C. A., & Bennett, J.
E. (2004). Candida glabrata erg1 mutant with increased sensitivity to azoles and to low oxygen tension.
Antimicrobial Agents and Chemotherapy, 48(7), 2483-2489.
Tzamarias, D., & Struhl, K. (1995). Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1
corepressor complex to differentially regulated promoters. Genes and Development, 9(7), 821–831.
Wang, S., Cao, J., Liu, X., Hu, H., Shi, J., Zhang, S., Keller, N. P., & Lu, L. (2012). Putative calcium channels
CchA and MidA play the important roles in conidiation, hyphal polarity and cell wall components in Aspergillus
nidulans. Plos One, 7(10), 1-13.
Watson, P. F., Rose, M. E., & Kelly, S. L. (1988). Isolation and analysis of ketoconazole mutants of
Saccharomyces cerevisiae. Journal of Medical and Veterinary Mycology, 26(3), 153–162.
Weig, M., Haynes, K., Rogers, T. R., Kurzai, O., Frosch, M., & Mühlschlegel, F. A. (2001). A GAS-like gene
family in the pathogenic fungus Candida glabrata. Microbiology, 147(8), 2007-2019.
Weig, M., Jansch, L., Grob, U., De Koster, C. G., Klis, F. M., & De Groot, P. W. J. (2004). Systematic
identification in silico of covalently bound cell wall proteins and analysis of protein-polysaccharide linkages of
the human pathogen Candida glabrata. Microbiology, 150(10), 3129-3144.
Yapar, N. (2014). Epidemiology and risk factors for invasive candidiasis. Therapeutic and Clinical Risk
Management, 10, 95–105.
Yu, Q., Ding, X., Xu, N., Cheng, X., Qian. K., Zhang, B., Xing, L., & Li, M. (2013). In vitro activity if
verapamil alone and in combination with fluconazole or tunicamycin against Candida albicans biofilms.
International Journal of Antimicrobial Agents, 41(2), 179-182.
Zhou, B. B., & Elledge, S. J. (2000). The DNA damage response: putting check points in perspective. Nature,
(6811), 433-439.
Zou, L., & Elledge, S. J. (2003). Sensing DNA damage through ATRIP recognition of RPA-ss DNA complexes.
Science, 300(5625), 1542-1548.