Clinical Potential of miRNAs in Human and Infectious Diseases
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that play critical roles in human disease. Several miRnome profiling studies have identified miRNAs deregulated in cancer and infectious diseases and miRNAs are also involved in regulation of the host response to infection. Thereby, the usage of miRNAs as biomarkers and potential treatments for both human and infectious diseases is under development. This review will provide insights into the contribution of miRNAs to pathogenesis and disease development and will present a general outline of the potential use of miRNAs as therapeutic tools.
Downloads
References
Carninci, P., J. Yasuda, and Y. Hayashizaki, Multifaceted mammalian
transcriptome. Curr Opin Cell Biol, 2008. 20(3): p. 274–80.
Shamovsky, I. and E. Nudler, Gene control by large noncoding RNAs.
Sci STKE, 2006. 2006(355): p. pe40.
Yazgan, O. and J.E. Krebs, Noncoding but nonexpendable: transcriptional
regulation by large noncoding RNA in eukaryotes. Biochem Cell
Biol, 2007. 85(4): p. 484–96.
Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic
gene lin-4 encodes small RNAs with antisense complementarity to
lin-14. Cell, 1993. 75(5): p. 843–54.
Guil, S. and M. Esteller, DNA methylomes, histone codes and miRNAs:
tying it all together. Int J Biochem Cell Biol, 2009. 41(1): p. 87–95.
Ma, F., et al., MicroRNA-466l upregulates IL-10 expression in
TLR-triggered macrophages by antagonizing RNA-binding protein
tristetraprolin-mediated IL-10 mRNA degradation. J Immunol, 2010.
(11): p. 6053–9.
Hussain, M., et al., Wolbachia uses host microRNAs to manipulate host
gene expression and facilitate colonization of the dengue vector Aedes
aegypti. Proc Natl Acad Sci USA, 2011. 108(22): p. 9250–5.
Henke, J.I., et al., microRNA-122 stimulates translation of hepatitis C
virus RNA. EMBO J, 2008. 27(24): p. 3300–10.
Alvarez-Garcia, I. and E.A. Miska, MicroRNA functions in animal development
and human disease. Development, 2005. 132(21): p. 4653–62.
Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function.
Cell, 2004. 116(2): p. 281–97.
Baranwal, S. and S.K. Alahari, miRNA control of tumor cell invasion
and metastasis. Int J Cancer, 2010. 126(6): p. 1283–90.
Esquela-Kerscher, A. and F.J. Slack, Oncomirs – microRNAs with a role
in cancer. Nat Rev Cancer, 2006. 6(4): p. 259–69.
Eulalio, A., L. Schulte, and J. Vogel, The mammalian microRNA
response to bacterial infections. RNA Biol, 2012. 9(6): p. 742–50.
Staedel, C. and F. Darfeuille, MicroRNAs and bacterial infection. Cell
Microbiol, 2013. 15(9): p. 1496–507.
Cullen, B.R., Viruses and microRNAs: RISCy interactions with serious
consequences. Genes Dev, 2011. 25(18): p. 1881–94.
LaMonte, G., et al., Translocation of sickle cell erythrocyte microRNAs
into Plasmodium falciparum inhibits parasite translation and contributes
to malaria resistance. Cell Host Microbe, 2012. 12(2):
p. 187–99.
Fernandez-Hernando, C., et al., MicroRNAs in metabolic disease. Arterioscler
Thromb Vasc Biol, 2013. 33(2): p. 178–85.
Plank, M., et al., Targeting translational control as a novel way to
treat inflammatory disease: the emerging role of microRNAs. Clin Exp
Allergy, 2013. 43(9): p. 981–99.
Shenouda, S.K. and S.K. Alahari, MicroRNA function in cancer: oncogene
or a tumor suppressor? Cancer Metastasis Rev, 2009. 28(3–4):
p. 369–78.
Tao, G. and J.F. Martin, MicroRNAs get to the heart of development.
Elife, 2013. 2: p. e01710.
Wang, W., E.J. Kwon, and L.H. Tsai, MicroRNAs in learning, memory,
and neurological diseases. Learn Mem, 2012. 19(9): p. 359–68.
Calin, G.A. and C.M. Croce, MicroRNA signatures in human cancers.
Nat Rev Cancer, 2006. 6(11): p. 857–66.
Garzon, R., G.A. Calin, and C.M. Croce, MicroRNAs in Cancer. Annu
Rev Med, 2009. 60: p. 167–79.
Meng, F., et al., MicroRNA-21 regulates expression of the PTEN tumor
suppressor gene in human hepatocellular cancer. Gastroenterology,
133(2): p. 647–58.
Calin, G.A. and C.M. Croce, Chronic lymphocytic leukemia: interplay
between noncoding RNAs and protein-coding genes. Blood, 2009.
(23): p. 4761–70.
Calin, G.A., et al., MicroRNA profiling reveals distinct signatures in B
cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA, 2004.
(32): p. 11755–60.
Eis, P.S., et al., Accumulation of miR-155 and BIC RNA in human B cell
lymphomas. Proc Natl Acad Sci USA, 2005. 102(10): p. 3627–32.
Poliseno, L., et al., Identification of the miR-106b25 microRNA cluster
as a proto-oncogenic PTEN-targeting intron that cooperates with its
host gene MCM7 in transformation. Sci Signal, 2010. 3(117): p. ra29.
Volinia, S., et al., A microRNA expression signature of human solid
tumors defines cancer gene targets. Proc Natl Acad Sci USA, 2006.
(7): p. 2257–61.
Lee, E.J., et al., Expression profiling identifies microRNA signature in
pancreatic cancer. Int J Cancer, 2007. 120(5): p. 1046–54.
Yanaihara, N., et al., Unique microRNA molecular profiles in lung
cancer diagnosis and prognosis. Cancer Cell, 2006. 9(3): p. 189–98.
Bommer, G.T., et al., p53-mediated activation of miRNA34 candidate
tumor-suppressor genes. Curr Biol, 2007. 17(15): p. 1298–307.
Chang, T.C., et al., Transactivation of miR-34a by p53 broadly influences
gene expression and promotes apoptosis. Mol Cell, 2007. 26(5):
p. 745–52.
Starczynowski, D.T., et al., Identification of miR-145 and miR-146a
as mediators of the 5q- syndrome phenotype. Nat Med, 2010. 16(1):
p. 49–58.
Mongroo, P.S. and A.K. Rustgi, The role of the miR-200 family
in epithelial-mesenchymal transition. Cancer Biol Ther, 2010. 10(3):
p. 219–22.
Gebeshuber, C.A., K. Zatloukal, and J. Martinez, miR-29a suppresses
tristetraprolin, which is a regulator of epithelial polarity and metastasis.
EMBO Rep, 2009. 10(4): p. 400–5.
Shaham, L., et al., MiR-125 in normal and malignant hematopoiesis.
Leukemia, 2012. 26(9): p. 2011–8.
Sun, Y.M., K.Y. Lin, and Y.Q. Chen, Diverse functions of miR-125
family in different cell contexts. J Hematol Oncol, 2013. 6: p. 6.
Kumar, M., et al., MicroRNA let-7 modulates the immune response to
Mycobacterium tuberculosis infection via control of A20, an inhibitor of
the NF-kappaB pathway. Cell Host Microbe, 2015. 17(3): p. 345–56.
Izar, B., et al., microRNA response to Listeria monocytogenes infection
in epithelial cells. Int J Mol Sci, 2012. 13(1): p. 1173–85.
Mun, J., et al., MicroRNA-762 is upregulated in human corneal epithelial
cells in response to tear fluid and Pseudomonas aeruginosa antigens
and negatively regulates the expression of host defense genes encoding
RNase7 and ST2. PLoS One, 2013. 8(2): p. e57850.
Yang, K., et al., miR-155 suppresses bacterial clearance in Pseudomonas
aeruginosa-induced keratitis by targeting Rheb. J Infect Dis,
210(1): p. 89–98.
de Vries,W. and B. Berkhout, RNAi suppressors encoded by pathogenic
human viruses. Int J Biochem Cell Biol, 2008. 40(10): p. 2007–12.
Pedersen, I.M., et al., Interferon modulation of cellular microRNAs as
an antiviral mechanism. Nature, 2007. 449(7164): p. 919–22
Zeiner, G.M., et al., Toxoplasma gondii infection specifically increases
the levels of key host microRNAs. PLoS One, 2010. 5(1): p. e8742.
Shapira, S., et al., Suppression of NF-kappaB activation by infection
with Toxoplasma gondii. J Infect Dis, 2002. 185 Suppl 1: p. S66–72.
Cai, Y., et al., STAT3-dependent transactivation of miRNA genes following
Toxoplasma gondii infection in macrophage. Parasit Vectors, 2013.
: p. 356.
Cannella, D., et al., miR-146a and miR-155 delineate a MicroRNA
fingerprint associated with Toxoplasma persistence in the host brain.
Cell Rep, 2014. 6(5): p. 928–37.
Coulson, R.M., N. Hall, and C.A. Ouzounis, Comparative genomics
of transcriptional control in the human malaria parasite Plasmodium
falciparum. Genome Res, 2004. 14(8): p. 1548–54.
Hall, N., et al., A comprehensive survey of the Plasmodium life cycle
by genomic, transcriptomic, and proteomic analyses. Science, 2005.
(5706): p. 82–6.
Rathjen, T., et al., Analysis of short RNAs in the malaria parasite and its
red blood cell host. FEBS Lett, 2006. 580(22): p. 5185–8.
Wurtz, N., et al., cAMP-dependent protein kinase from Plasmodium
falciparum: an update. Parasitology, 2011. 138(1): p. 1–25.
Cohen, A., V. Combes, and G.E. Grau, MicroRNAs and Malaria – A
Dynamic Interaction Still Incompletely Understood. J Neuroinfect Dis,
6(1).
Mantel, P.Y., et al., Infected erythrocyte-derived extracellular vesicles
alter vascular function via regulatory Ago2-miRNA complexes in
malaria. Nat Commun, 2016. 7: p. 12727.
Wang, Z., et al., Red blood cells release microparticles containing
human argonaute 2 and miRNAs to target genes of Plasmodium falciparum.
Emerg Microbes Infect, 2017. 6(8): p. e75.
Chamnanchanunt, S., et al., Downregulation of plasma miR-451 and
miR-16 in Plasmodium vivax infection. Exp Parasitol, 2015. 155:
p. 19–25.
Delic, D., et al., Hepatic miRNA expression reprogrammed by Plasmodium
chabaudi malaria. Parasitol Res, 2011. 108(5): p. 1111–21.
Hentzschel, F., et al., AAV8-mediated in vivo overexpression of miR-155
enhances the protective capacity of genetically attenuated malarial
parasites. Mol Ther, 2014. 22(12): p. 2130–41.
Marsolier, J., et al., OncomiR addiction is generated by a miR-155
feedback loop in Theileria-transformed leukocytes. PLoS Pathog, 2013.
(4): p. e1003222.
Gillan, V., et al., Characterisation of infection associated microRNA and
protein cargo in extracellular vesicles of Theileria annulata infected
leukocytes. Cell Microbiol, 2019. 21(1): p. e12969.
Haidar, M., et al., miR-126-5p by direct targeting of JNK-interacting
protein-2 (JIP-2) plays a key role in Theileria-infected macrophage
virulence. PLoS Pathog, 2018. 14(3): p. e1006942.
Abelson, J.F., et al., Sequence variants in SLITRK1 are associated with
Tourette’s syndrome. Science, 2005. 310(5746): p. 317–20.
Porkka, K.P., et al., MicroRNA expression profiling in prostate cancer.
Cancer Res, 2007. 67(13): p. 6130–5.
Qi, J., et al., Circulating microRNAs (cmiRNAs) as novel potential
biomarkers for hepatocellular carcinoma. Neoplasma, 2013. 60(2):
p. 135–42.
Wang, X.F., C.Z. Lu, and D.S. Xia, [Intravascular ultrasonic evaluation
of poststenting atherosclerotic plaque redistribution and lumen reduction
at the stent edge: does stent length matter?]. Zhonghua Xin Xue
Guan Bing Za Zhi, 2008. 36(6): p. 481–4.
Biswas, S., MicroRNAs as Therapeutic Agents: The Future of the Battle
Against Cancer. Curr Top Med Chem, 2018. 18(30): p. 2544–54.
Elfimova, N., et al., Circulating microRNAs: promising candidates serving
as novel biomarkers of acute hepatitis. Front Physiol, 2012. 3:
p. 476.
Hu, W., et al., Functional miRNAs in breast cancer drug resistance.
Onco Targets Ther, 2018. 11: p. 1529–41.
Li, Y.J., et al., Alterations of serum levels of BDNF-related miRNAs in
patients with depression. PLoS One, 2013. 8(5): p. e63648.
Wang, J., et al., Circulating microRNAs are promising novel biomarkers
for drug-resistant epilepsy. Sci Rep, 2015. 5: p. 10201.
Weir, D.W., A. Sturrock, and B.R. Leavitt, Development of biomarkers
for Huntington’s disease. Lancet Neurol, 2011. 10(6): p. 573–90.
Dong, Y., et al., Prognostic significance of miR-126 in various cancers:
a meta-analysis. Onco Targets Ther, 2016. 9: p. 2547–55.
Bader, A.G., D. Brown, and M. Winkler, The promise of microRNA
replacement therapy. Cancer Res, 2010. 70(18): p. 7027–30.
Czech, M.P., MicroRNAs as therapeutic targets. N Engl J Med, 2006.
(11): p. 1194–5.
Rupaimoole, R. and F.J. Slack, MicroRNA therapeutics: towards a new
era for the management of cancer and other diseases. Nat Rev Drug
Discov, 2017. 16(3): p. 203–22.
Stenvang, J., et al., Inhibition of microRNA function by antimiR oligonucleotides.
Silence, 2012. 3(1): p. 1.
Wiggins, J.F., et al., Development of a lung cancer therapeutic based
on the tumor suppressor microRNA-34. Cancer Res, 2010. 70(14):
p. 5923–30.
Liu, C., et al., The microRNA miR-34a inhibits prostate cancer stem
cells and metastasis by directly repressing CD44. Nat Med, 2011. 17(2):
p. 211–5.
Trang, P., et al., Systemic delivery of tumor suppressor microRNA mimics
using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther,
19(6): p. 1116–22.
Kota, J., et al., Therapeutic microRNA delivery suppresses tumorigenesis
in a murine liver cancer model. Cell, 2009. 137(6): p. 1005–17.
Cortez, M.A., et al., Therapeutic delivery of miR-200c enhances
radiosensitivity in lung cancer. Mol Ther, 2014. 22(8): p. 1494–1503.
Calin, G.A., et al., MiR-15a and miR-16-1 cluster functions in human
leukemia. Proc Natl Acad Sci USA, 2008. 105(13): p. 5166–71.
Ma, L., et al., Therapeutic silencing of miR-10b inhibits metastasis in a
mouse mammary tumor model. Nat Biotechnol, 2010. 28(4): p. 341–7.
Park, J.K., et al., miR-221 silencing blocks hepatocellular carcinoma
and promotes survival. Cancer Res, 2011. 71(24): p. 7608–16.
Rupaimoole, R., et al., Hypoxia-upregulated microRNA-630 targets
Dicer, leading to increased tumor progression. Oncogene, 2016. 35(33):
p. 4312–20.
Correia, C.N., et al., Circulating microRNAs as Potential Biomarkers of
Infectious Disease. Front Immunol, 2017. 8: p. 118.
Drury, R.E., D. O’Connor, and A.J. Pollard, The Clinical Application of
MicroRNAs in Infectious Disease. Front Immunol, 2017. 8: p. 1182.
Jopling, C.L., et al., Modulation of hepatitis C virus RNA abundance by
a liver-specific MicroRNA. Science, 2005. 309(5740): p. 1577–81.
Elmen, J., et al., Antagonism of microRNA-122 in mice by systemically
administered LNA-antimiR leads to up-regulation of a large set of
predicted target mRNAs in the liver. Nucleic Acids Res, 2008. 36(4):
p. 1153–62.
Ho, B.C., et al., Inhibition of miR-146a prevents enterovirus-induced
death by restoring the production of type I interferon. Nat Commun,
5: p. 3344.
Tay, H.L., et al., Antagonism of miR-328 increases the antimicrobial
function of macrophages and neutrophils and rapid clearance of nontypeable
Haemophilus influenzae (NTHi) from infected lung. PLoS
Pathog, 2015. 11(4): p. e1004549.
Alexander, M., et al., Exosome-delivered microRNAs modulate the
inflammatory response to endotoxin. Nat Commun, 2015. 6: p. 7321.
Zhang, T., et al., Salmonella enterica serovar enteritidis modulates
intestinal epithelial miR-128 levels to decrease macrophage recruitment
via macrophage colony-stimulating factor. J Infect Dis, 2014. 209(12):
p. 2000–11.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright
Copyright on any open access article in Molecular and Cellular Therapies published bythe Institute is retained by the author(s). Authors can grant any third party the right to use
the article freely as long as its integrity is maintained and its original authors, citation details and publisher are identified. Please contact the Office of Molecular and Cellular
Therapies for more information specifically regarding permissions if there are questions.