
NL2CMD: An Updated Workflow for Natural
Language to Bash Commands Translation

Quchen Fu∗, Zhongwei Teng, Marco Georgaklis,
Jules White and Douglas C. Schmidt

Dept. of Computer Science, Vanderbilt University Nashville, TN, USA
E-mail: quchen.fu@vanderbilt.edu; zhongwei.teng@vanderbilt.edu;
marco.georgaklis@vanderbilt.edu; jules.white@vanderbilt.edu;
d.schmidt@vanderbilt.edu
∗Corresponding Author

Received 09 July 2022; Accepted 16 September 2022;
Publication 31 January 2023

Abstract

Translating natural language into Bash Commands is an emerging research
field that has gained attention in recent years. Most efforts have focused on
producing more accurate translation models. To the best of our knowledge,
only two datasets are available, with one based on the other. Both datasets
involve scraping through known data sources (through platforms like stack
overflow, crowdsourcing, etc.) and hiring experts to validate and correct either
the English text or Bash Commands.

This paper provides two contributions to research on synthesizing Bash
Commands from scratch. First, we describe a state-of-the-art translation
model used to generate Bash Commands from the corresponding English
text. Second, we introduce a new NL2CMD dataset that is automatically
generated, involves minimal human intervention, and is over six times larger
than prior datasets. Since the generation pipeline does not rely on existing
Bash Commands, the distribution and types of commands can be custom

Journal of Machine Learning Theory, Applications and Practice, Vol. 1, 45–82.
doi: 10.13052/jmltapissn.2023.002
This is an Open Access publication. © 2023 the Author(s). All rights reserved.



46 Q. Fu et al.

adjusted. Our empirical results show how the scale and diversity of our dataset
can offer unique opportunities for semantic parsing researchers.

Keywords: Bash Commands generation, NL2CMD dataset, semantic pars-
ing, natural language processing.

1 Introduction

Automating the conversion of natural language to executable computer pro-
grams is a long-coveted goal that has recently experienced a resurgence
of interest amongst researchers and practitioners. In particular, converting
natural language to Bash (which is a shell scripting language for UNIX
systems) has emerged as an area of interest, with the goal of automating
repetitive tasks, such as file manipulation, search, and application-specific
scripting.

The NL2Bash problem can be described as a semantic parsing challenge,
i.e., creating a mapping from natural language to a formal, executable rep-
resentation [1]. Significant efforts to tackle this problem have been sparked
by the NLC2CMD competition at the NeurIPS 2020 conference. Our recent
work in this competition yielded an architecture that improves the state-
of-the-art performance in translating natural language to Bash Commands
from 13.8% to 53.2% [2]. The transformer model that we created for the
NLC2CMD competition is currently the best-performing architecture for this
problem [3].

Until recently, the Bash translation problem has relied heavily on the
availability of NL2Bash dataset [4]. This corpus of over 9,000 English-
command pairs contains frequently used Bash Commands scraped from
forums, tutorials, tech blogs, and course materials. Constructing the NL2Bash
corpus involved hiring freelance software engineers, each assigned to manu-
ally search, browse, and enter data through a web interface.

The freelancers working on this project constructed roughly 50 english
language and Bash Command pairs per hour, prior to filtering and cleaning
the dataset [4]. This manual approach is clearly resource-intensive since it
requires labor from specialized freelancers, which is time-consuming and
expensive. Moreover, the approach is not scalable since the marginal cost
of labor does not significantly diminish as the size of the dataset increases.

As commonly observed in this research domain, only marginal improve-
ments in the accuracy of solutions to the NL2Bash problem have occurred
since progress has been impeded due to the limited amount of annotated
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data. This paper extends our prior published work [5] on translating natural
language to Bash Commands and provides the following new contributions
beyond our prior work:

1. It describes the use of a membership query synthesis technique to
generate a large dataset of Bash Commands, expanding the available
data to solve this problem,

2. It demonstrates a back-translation technique that takes the generated
Bash Commands and creates corresponding natural language pairs,

3. It discusses a validation and verification technique for generated Bash
Commands by converting them into an executable form and running
them in an isolated environment that doubles as a data quality metric,

4. It presents a new dataset called NLC2CMD, which is the largest
dataset for translating natural language to Bash Command available to
researchers and practitioners,

5. It adopts a post-process addition to the original workflow, replacing
placeholder values with actual arguments and making many of the
translated commands executable in the Linux environment.

Most importantly, our work suggests that the future of tackling this
hard problem lies within the automation of Bash Command Synthesis and
Back-translation to natural language representations. We have established a
workflow that can be improved upon and used to maximize model perfor-
mance with minimal labeling costs. Our approach has numerous advantages
over prior work, with notable improvements in time efficiency, labeling costs,
diversity of the dataset, and practicality.

The remainder of this paper is organized as follows: Section 2 and 3
introduces the NLC2CMD problem and outlines recent developments in
semantic parsing; Section 4 summarizes the challenges for translating nat-
ural language to Bash Commands; Section 5 analyzes the performance of
different model structures and training techniques; Section 6 describes our
data generation/validation technique and statistics including data quality and
comparison with existing datasets; Section 7 discusses different metrics and
error analysis for the state-of-the-art model on our new dataset; and Section
8 presents concluding remarks and outlines our future work.

2 Research Problem Overview

Translating natural language into source code for software or scripts can help
developers find ways to accomplish tasks in languages they are not familiar
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with, similar to how help forums like Stack Overflow are used today. As early
as 1966, Sammet [6] envisioned a future of automated code generation where
people program in their native language. While generating software templates
from configuration files is now common practice, research on translating
natural language into code is still in a relatively early stage.

Past research mainly focused on scripting languages or small code snip-
pets. Various datasets have been created to aid research on generating code
from natural languages. Examples of such datasets include WikiSQL for
SQL [7], CoNaLa for Python [8], and NL2Bash for Bash [9].

This paper focuses on the task of translating natural language into Com-
mands in the Bash scripting language. Translating natural language into Bash
Commands is an example of semantic parsing, which means natural language
is translated into logical forms that can be executed [10]. For example, the
phrase “how do I compress a directory into a bz2 file” can be translated to the
Bash command: tar -cjf FILE NAME PATH.

In the near term, natural language to Bash Commands translation is
unlikely to replace discussion groups or help forums completely. They can,
however, provide a quick reference mechanism that may improve on-demand
code suggestions and popups generated by integrated development environ-
ments (IDEs). This type of AI-based approach complements other prior work,
such as SOFix [11], which can fix bugs in code by mining postings in Stack
Overflow.

3 Background and Related Work

This section summarizes the background and related work surrounding the
areas covered in this paper. Our contributions focus on advancing machine
translation, where our approach is based on dataset synthesis. This research
approach is novel in the domain of Bash Command translation.

3.1 Machine Translation

Various architectures have been explored on different tasks of program
synthesis from natural language. For example, Lin et al. [12] achieved
state-of-the-art generation of shell scripts using Recurrent Neural Net-
works (RNNs) [13]. Likewise, Zeng et al. [14] utilized the Bert [15]-based
encoder and a pointer-generator [16] decoder to generate SQL code from
text. Moreover, ValueNet [17] (Transformer encoder + LSTM decoder with
pointer networks [18]) was the first Text-to-SQL system incorporating values.
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In addition, Xu et al. [19] improved upon the TranX [20] transition-based neu-
ral semantic parser to translate natural language into general programming
languages, such as Python.

The best results in prior work on the problem of translating natural
language to Bash Commands were produced by Tellina [12]. Tellina used
the Gated Recurrent Unit (GRU) Network [21], which is an RNN that
achieved 13.8% accuracy on the NLC2CMD metrics proposed by IBM [22].
The Tellina [12] paper produced the NL2Bash [9] dataset and new semantic
parsing methods that set the baseline for mapping English sentences to Bash
Commands.

Transformer models generally have better accuracy and faster training
times [23] than RNNs [13] on machine translation tasks. Prior research on
machine translation has largely focused on the GRU architecture to translate
natural language to Bash Commands. This paper enhances prior research by
exploring the performance of several architectures on the NLC2CMD dataset.

Our experiments with applying Transformer models to the natural lan-
guage to Bash task show that they outperform other approaches, such as (1)
RNNs that show an 18.4% improvement and (2) Bidirectional RNN (BRNN)
that show up to 4.4% improvement [24]. Analyzing how model structural
choices and prediction strategies affect model performance in natural lan-
guage to command translation task [22] is thus a key contribution of this
paper. Since the energy and accuracy metrics for model evaluation were
specifically designed for the NL2CMD competition, potential improvements
for the metrics are also discussed.

3.2 Dataset Synthesis

Bash is a frequently-used command line scripting language. It thus offers a
unique opportunity to generate diverse – and more importantly – executable
commands easily due to its relatively short and simple nature. To increase
programmer productivity, the Bash Commands suggested by a tool should
be both syntactically and semantically correct. If suggestions are not syn-
tactically correct and cannot execute, programmers may simply ignore them
since they distract from the task at hand. Moreover, if translations are not
semantically correct, programmers may execute Bash Commands that do
not accomplish the goal that they want to achieve, or worse, have negative
impacts on the system (such as deleting important files or directories).

Our work on Bash Command generation divides the synthesis into two
steps: (1) scraping syntax and flag structures from the Bash manual pages
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for efficient command generation and (2) training a back-translation model
for accurate command summarization. This approach enabled us to construct
a dataset of English-command pairs that is over six times larger than the
original NL2Bash dataset.

Bash manual pages give an introduction to Bash features and are the
definitive reference on shell behavior [25], providing complete and accurate
guidance for Bash usage. Recent work has explored the use of manual page
data for assistance in Bash to natural language translation [26], processing
the page descriptions to aid the translation model. However, we found the
manual pages offered additional insight and enough context into utility-flag
relationships to generate an entirely new dataset from scratch.

Numerous approaches have incorporated dataset synthesis and augmen-
tation in translation tasks. Nguyen et al. [27] explored the use of combining
augmented data with the original dataset to boost the accuracy of neural
machine translation between human languages. Zhao et al. [28] also explored
data augmentation in neural machine translation to improve dataset diver-
sification. Notably, Agarwal et al. [29] proposed using document similarity
methods to create noisy parallel datasets of code, enabling the advancement
of machine translation with monolingual datasets.

With dataset generation, transformer-based models have proven effective
for parallel corpus mining in the domain of machine translation [30]. Pre-
vious research has tried using classification techniques, such as document
similarity [29], to identify translations from pre-existing corpora.

4 Key Research Challenges

This section summarizes key research challenges we encountered when trans-
lating natural language to Bash Commands and describes general obstacles
the machine translation community is facing on these topics.

4.1 Challenge 1: Translating From an Ambiguous Language to
Precise Bash Commands is Hard

Translating human language into code is inherently hard. One reason is
that human language is ambiguous by nature. As the famous Winograd
test [31] puts it, the sentence “The trophy would not fit in the brown suitcase
because it was too big”, it can either mean trophy or suitcase. While a
human may be able to decide which one is correct, computers have a harder
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time since understanding this sentence requires “the use of knowledge and
commonsense reasoning” [32].

There are two general types of ambiguities [33]:

• Genuine ambiguities, where a sentence really can have two different
meanings to an intelligent listener. An example of genuine ambiguity in
the context of Bash Commands is “merge file A with B in folder C”.
This sentence has at least 2 interpretations: “merge file A with B if B is
in folder C” or “merge file A with B and put the result in folder C”.

• Computer ambiguities, where the meaning is entirely clear to a listener,
but a computer detects more than one meaning. A compute ambiguity
can occur when multiple parse trees exist for a natural language sen-
tence, such that when the tree is flattened the order of words for input
can be undefined.

Both types of ambiguities can affect the performance of translation from
natural language to Bash Commands.

4.2 Challenge 2: The Natural Language to Bash Translation Task
is Usually a Many-to-Many Mapping

Translation tasks are usually many-to-many mappings, which means there
can be multiple correct translations for the same sentence. Moreover, even
the sentence itself can have multiple methods of expression. As the size of
the dictionary grows, there will be more possible translations for the same
input. The process of creating the target sentences requires significant human
effort.

Natural language is inherently flexible and Bash Commands can have
functional overlap between different utilities. For example, when trans-
lating natural language to Bash the phrases find the word "foo" in

file "bar" and search in "bar" for "foo" have the same meaning.
Similarly, both grep -w foo bar and cat bar | grep -w foo are valid
translations.

4.3 Challenge 3: Paired English and Bash Commands Data Are
Not Easily Accessible

Machine translation models require many training examples. Collecting such
a corpus is hard, however, especially for supervised learning that requires
paired data (i.e., data with labels) an understanding of both the source and
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target languages is needed. Without a large number of training examples,
therefore, it may be hard for the model to generalize beyond the small samples
in the training set.

Translating natural language to Bash Commands provides a unique chal-
lenge in which there are both a large number of English sentences and
Bash Commands. However, paired data (i.e., English sentences with the
corresponding Bash Commands) are not easily accessible. For paired sources,
such as coding help forums like Stack Overflow, the question is usually
a detailed description of the command that is summarized succinctly by
humans. Writing Bash Commands requires considerable coding skills and
is thus hard to crowd-source.

4.4 Challenge 4: Bash Commands Change Environments and
Are Generally Computer Specific

Bash Commands are often executed on the command line and are used
for file manipulation, search, and application-specific scripting. When these
commands are generated in large quantities they often result in deleted files,
undefined behavior, and incredibly large searches. This output not only taxes
the environment they run on if executed, but can damage the system itself by
deleting critical files and directories.

In addition to potentially dangerous behavior, different file systems vary
dramatically and humans use a variety of methodologies when organizing
their file systems. This results in infinite unique file system configurations,
each with different directory structures, permissions, and file names. With
both generated Bash Commands and commands scraped from the Internet, a
valid execution on one machine does not ensure a valid execution on another.
Moreover, what may achieve the desired result on one machine may crash
another.

5 Research Questions

Which Deep Learning Architectures Perform Best When
Translating Between Natural Language and Bash Commands?

Since there is relatively little literature published on translating natural lan-
guage to Bash Commands, an important concern is identifying which archi-
tectures published in other domains perform best. In particular, Sequence-
to-Sequence [34] models have been studied extensively in the context of
translations, so we explored their performance on this particular task. These
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Table 1 Model performance comparison
Encoder Decoder Accuracy Train Inference
Transformer Transformer 0.522∗ 1625 0.126
Transformer RNN – – –
RNN Transformer 0.486 1490 0.116
RNN RNN 0.336 1151∗ 0.069
BRNN Transformer 0.495 1411 0.120
BRNN RNN 0.476 1218 0.065∗

Table 2 The NLC2CMD leaderboard
Team Model Data Augment Accuracy Power Latency
Magnum Transformer No 0.532∗ 682.3 0.709
Hubris GPT-2 No 0.513 809.6 14.87
Jb Classifier+Transformer Yes 0.499 828.9 3.142
AICore Two-stage Transformer No 0.489 596.9∗ 0.423
Tellina [12] BRNN (GRU) No 0.138 916.1 3.242

models consist of two main components: an encoder and a decoder. The
encoder turns the inputs into vectors and the decoder reverses the process.
We compared different combinations of encoder-decoder layers, including
RNN, BRNN, and Transformer, to translate the natural language to Bash
Commands.

Chen et al. [35] discovered that Transformer quality gains stemmed
mostly from the Transformer encoder and that RNN decoders often have
faster inference times. We therefore mixed and tested different combina-
tions of encoder and decoder types. Table 1 summarizes the performance
comparison (measured in seconds) between different model structures.

The results shown in Table 1 indicate that in this particular case, using the
Transformer as both an encoder and decoder has the best accuracy.1 Likewise,
the model with an RNN as the decoder can reduce inference time by 50%.

To provide a high-level perspective on how model architecture impacts
performance, we analyzed the architectures of the top-performing teams in
the NLC2CMD competition. Table 5 shows the Top 4 teams and the baseline
model on the NLC2CMD Challenge leaderboard [22]. The Transformer
architecture discussed in Section 5.1 was produced from an analysis of our
team Magnum’s architecture, which won the accuracy competition.

1The OpenNMT [36] framework currently does not support a Transformer encoder + RNN
decoder.
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AICore [22] won the energy track by having the least energy consumption
with a two-stage prediction design consisting of two 2-layer Transformers.
The first model predicted the template and the second model filled in the
arguments. We suspect their small energy consumption is due to smaller
model sizes (in contrast, the Magnum teams’ model consisted of six layers).
However, the gain in less energy consumption also came with a cost of lower
accuracy (4.3% decrease).

Team Hubris [22] adopted a fine-tuned ensemble GPT-2 as the language
model and achieved second place in accuracy. GPT-2 models are large (usu-
ally more than 5 GB) and power-hungry. It is therefore challenging to apply
them as a background program running continuously in a terminal to suggest
translations of Bash Commands. Another problem with GPT-2 ensembles is
that their inference time was prohibitive for real-world deployment, which
requires fast response time and low energy consumption to run continuously
in the background. Considerable effort is needed to compress and deploy
GPT-2 ensembles to compete with other solutions.

Team Jb [22] augmented the training data using back-translation [37] and
created 78,000 augmented training samples. They also used the manual pages
of Linux Bash Commands [38] to concatenate utilities with corresponding
flags and generate an additional 200,000 new samples. Similar to Team
AICore, they also used a two-stage model consisting of a classifier for
utility prediction and a transformer for command generation. Interestingly,
a large number of additional training samples was insufficient to overcome
the architectural improvements of other teams.

The results shown in Table 5 provide several key insights:

• Transformer models were the most popular choice. In this task, two-
stage models performed worse than a single-stage-and-larger model.

• GPT-2 approaches achieved near state-of-the-art accuracy, but produced
much larger models compared to Transformers and had much longer
inference times.

• Data augmentation improved accuracy (Team Jb is 1% more accurate
than Team AICore) but had less impact than the model structure in this
task (with the caveat that the two teams had similar – but not identical –
models).

The experiments in the remainder of this paper use Transformer models since
they were the best-performing architecture in the NLC2CMD competition.
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How do Bash Command Parameters Affect the Performance of
Natural Language to Bash Translation?

As discussed in Section 4.4, obtaining training data of paired English and
Bash Commands is hard. Without sufficient training data, the model may
not be able to learn the entire vocabulary that it must translate to or from.
Finding ways of reducing vocabulary size is thus essential to developing more
accurate models.

Bash Commands typically consist of three terms: (1) utilities that specify
the main goals of the command (e.g., ls), (2) flags that provide metadata
regarding command execution (e.g., -verbose), and (3) parameters that
specify directories, strings, or other values that the command should operate
on (e.g., /usr/bin). Each utility has a bounded number of flags that can be
passed to it. In contrast, parameters have a much larger range of values. Train-
ing examples for translating natural language to Bash Commands provide
values for the parameters, which can vary significantly between translated
examples of the same command.

We hypothesized that including the actual parameter values (such as ls
/usr/bin and ls /etc) from the training examples would vastly increase
the overall vocabulary size and decrease model accuracy. Our rationale for
this hypothesis is that there are few paired examples of natural language and
Bash Commands. Translation models therefore typically perform worse with
large vocabulary sizes and limited training data.

To test this hypothesis, we used the English and Bash tokenizers from the
Tellina model [12] with our modification. As shown in Figure 1, Bash tokens
can be categorized as utilities, flags, and parameters (i.e., arguments, such as a
specific path). The English tokenizer decapitalized all the letters and replaced
parameters with generic forms. The Bash tokenizer parsed Commands into
syntax trees with each element labeled as utility, flag, or parameter.

Our accuracy metric focused mainly on the structure and syntactic cor-
rectness of the Bash Command. We therefore replaced all the parameters in
Bash with their corresponding generic representations. For example, a folder

Figure 1 Example of a Bash Command.
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Table 3 Parameter replacement
Encoder Decoder Accuracy Accuracy (NP)
Transformer Transformer 0.509 0.522*
Transformer RNN – –
RNN Transformer 0.448 0.486*
RNN RNN 0.151 0.336*
BRNN Transformer 0.483 0.495*
BRNN RNN 0.301 0.476*

path like /usr/bin is replaced with PATH. By applying this transforma-
tion, the Bash vocabulary size was reduced from 8,184 to 776 tokens and
the accuracy of the Transformer models we tested increased by 1.3%. As
shown in Table 3, we achieved accuracy and performance increases across all
architectures, especially for the ones with less accuracy.

How to Expand the Amount of Available Bash Command English
Language Pairs Without the Hiring of External Freelancers?

As discussed earlier, further innovation and developments when attempting to
solve the natural language to Bash Command translation problem are severely
restricted by the limited number of command-natural language pairs provided
in the original dataset. This question not only deals with the most effective
way of adding new and valid Bash Commands, but also deals with creating
corresponding natural language pairs.

Scraping from online forums, such as StackOverflow, effectively gathers
commands that could be added to the dataset, but yield significant problems
when dealing with invalid commands, duplicate commands, and commands
of different programming languages. Another potential approach could be
to augment the training data available, making minor changes to commands
like the removal of a flag. However, this approach also poses challenges
in differentiating between similar commands and adds minimal diversity of
function to the dataset.

We decided to create a Bash Command generator and use manual page
data to synthesize entirely new Bash Commands. This approach allowed us to
curate the synthesized dataset, maintaining similarities to the existing dataset,
while still introducing informative data points.

To create corresponding natural-language components, we used a back-
translation model with a transformer architecture. Transformer models have
proven extremely effective with summarization tasks, which our back-
translation was beginning to closely resemble.
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Figure 2 Pipeline of the NLC2CMD Workflow.

5.1 Summary of the Highest Performing Architecture

We tested several different data processing, architectural, and post-processing
strategies, as discussed above. We now describe the best-performing model
that we tested on the NLC2CMD competition data. Although this model will
be improved by subsequent work, it provides a starting point for researchers
focusing on natural language to Bash Command translation. In particular, our
results show that the Transformer model is a robust foundation for future
research in this area.

Our Transformer model pipeline was built from the following six steps
shown in Figure 5 and described below:

1. Parsers and filters – The paired raw data first go through different
parsers that convert English sentences and Bash Commands into syntax
trees (data that cannot be parsed are removed).

2. Flatten and pre-process – The syntax trees are flattened and the
parameters are replaced with their generic representations.

3. Tokenizer – The flattened sentence pairs are tokenized and dictionaries
are created for English sentences and Bash Commands.

4. Transformer models – Tokenized sentences are fed into Transformer
models and Beam Searches are enabled to produce multiple translations.

5. Ensemble – The best-performing models on the validation dataset are
chosen to create an ensemble.

6. Post-process – The translations produced by the ensemble model are
post-processed by removing the placeholder arguments and inserting the
values originally removed by the parser.

5.2 Parsing and Tokenization

For our investigation, we used both the NLC2CMD dataset (which contains
10,347 pairs of English sentences and their corresponding Bash Commands)
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Figure 3 Visualization of the Tokenization process.

and our generated dataset (which consisted of 71,705 English sentence-Bash
Command pairs). Of the 10,347 pairs of data in the original dataset, 29 had
grammar issues and were therefore excluded. The size of this public dataset
was relatively small in the natural language processing research field2 and the
goal for data processing was to create a small word vocabulary and utilize as
much data as possible. Our generated dataset was significantly larger, so we
shifted our focus to achieving higher quality commands, as opposed to using
as many of the generated commands as possible.

Bash Commands can be complex and nested, as shown in Figure 3.
This structure helps explain why programmers may find it hard to create –
or even comprehend – Bash Commands, thereby motivating the need for a
customizable parser. Bash Commands can also be piped, which means the
Commands may consists of multiple parts, with the output of the former part
been the input for the latter one.

We built our parser atop the Tellina [12] parser developed based on
Bashlex [39] in prior work. This parser can parse a Bash Command into
an abstract syntax tree (AST) composed of utility nodes, each of which may
contain multiple corresponding flags and parameters. During the tokenization
stage, utilities and flags are kept “as is” and parameters are categorized
and replaced with NUMBER, PATH, FILE, DIRECTORY, DATETIME,

PERMISSION, TIMESPAN, SIZE, with the default option of REGEX.
Natural language sentences are pre-processed by filtering out the stop

words (e.g, “a”, “is”, “the”, which carries little meaning). The remaining
words are then decapitalized and lemmatized (preserving the common base
form) to create a relatively smaller dictionary mapping.

2In comparison, WMT-14 en-de (a popular dataset for machine translation benchmark) has
4.5 million sentence pairs.
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Our generator used a different parameter categorization strategy than the
parser. The goal was to better align with the interpretation of the manual
pages and the generation of high-quality commands. Parameter categoriza-
tions were similar, however, and the generator categorization was easily
converted to the representation of the parser for training and inference with
the transformer-based model.

5.3 Model Details

The model with the highest accuracy used a Transformer as both the encoder
and the decoder, as shown in Figure 4. The encoder and decoder each
consisted of six layers. The model was trained for 2,500 steps and used an
ensemble of the four top-performing single models.

The first positional weight was set to 1.0 and the rest of the weights
were set to the exponential of beam scores capped by 0.5. We focused
on training an efficient and robust model that can be deployed easily. The
need to modify the network structure was therefore relatively low. Instead of
FairSeq [40] (which allows users to modify the low-level network structure),
we chose OpenNMT [36], which is an open-source neural sequence learning
framework to implement our Transformer model.

We found that the Transformer model is sensitive to learning rate and
larger batch sizes will produce better results. The detailed training hyperpa-
rameters are available on our GitHub repository [41]. Likewise, the guiding
principle behind our tuning strategy is derived from Popel et al. [42].

We trained our model on 2 Nvidia 2080 Ti Graphic cards with 64GB
memory. Our model achieved 53.2% accuracy on the hidden test dataset for

Figure 4 Model structure.
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the NLC2CMD competition and had top performance in both inference time
and energy consumption. We addressed challenge 4.1 by masking out specific
parameters. To limit ambiguity, the dataset itself also restricted the natural
language description to a single sentence and the Bash Command to a single
line [9]. When the dataset was collected, the same Bash Command was paired
with many English descriptions to increase language diversity [9], thereby
addressing Challenge 4.4.

5.4 Post-processing

The initial results of our model translation contained the placeholders inserted
by the parser described above. This insertion was done to create a smaller dic-
tionary mapping and improve the accuracy of the model. This result, although
accurate, lacks practicality and many of the commands are confusing to
humans and are far from executable. For example, the inclusion of REGEX
in a command translated from the English language is vague and hard for
anyone looking to use the workflow as a tool. To address this issue, we
added post-processing of the translated commands into our workflow. Both
inexperienced users and machines themselves can make use of executable
commands, easily running them in a terminal, yet commands nested with
vague placeholders are less useful.

Using the parser from the pre-processing of the natural language, we
extracted the parameters provided in the original corpus and used them to
fill out placeholders in the created translation. Many translated commands
had a perfect one-to-one replacement with the extracted parameters replacing
all of the placeholders to create executable Bash Commands. Some other
commands, however, contained more placeholders than parameters extracted
from the parser. which resulted in partially replaced commands. Although
these commands were not executable, they were also not implicitly incorrect
translations.

For example, the description “remove all files in the current directory with
a specific inode number” may have translated to find . -inum Quantity

exec rm . In this translation, the specific inode number represented by the
Quantity placeholder was not replaced as it never appeared in the original
description. This demonstrates how the creation of partially replaced, non-
executable commands can still be accurate translations, such that efforts
towards partial replacement are worthwhile. This last step in the workflow
increases usability and practicality surrounding the translation pipeline by
converting Bash Command templates to executable or nearly executable
commands that better resemble the purpose described in the natural language.
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6 Corpus Construction

We were able to construct a corpus of “Bash Command and natural language”
pairs six times larger than that of the original dataset. We created this large
corpus by developing a generator to synthesize millions of Bash Commands,
which were later validated and scaled. We then fed these commands through
our back-translation model to create the corresponding natural language
pairs.

6.1 An Updated Pipeline

In our updated pipeline we include the most successful aspects of our prior
pipeline to generate an entirely new dataset and then train and test our
top-performing model on our new dataset. Our state-of-the-art transformer-
based model has proven effective in machine translation, so we decided to
incorporate it both in our dataset generation and our training. Our updated
pipeline, as demonstrated in Figure 6, consisted of the steps described below:

1. Manual Page Scraping – We scraped data from the manual pages to
determine the syntax usage of 38 utilities. We also determined the flags
associated with each utility and the categorization of the parameter, if
any, associated with each of those flags.

2. Generation – With the syntactical structures, flags, and arguments for
each utility, we generated over 1 million Bash Commands from different
combinations of flags and piped commands.

3. Validation – The generated commands were then replaced with actual
arguments. For example, [File] was replaced with temp.txt. These
commands were executed on a virtual machine and we discarded all
commands that did not execute successfully with exit statuses of zero
within a given time frame.

4. Scaling – The validated commands were then converted into a form
understandable by the parser, parsed, and scaled. This step involved
preserving a similar proportion of commands with the find utility to
the original dataset and ensuring there was a diversity of other utilities in
the new dataset. Likewise, we discarded commands of over-represented
utilities and commands that were parsed incorrectly by the parser.

5. Back-translation – The validated commands were then converted into a
form understandable by the parser and fed to the back-translation model.
This model was the same transformer-based model used on the original
dataset, except trained in the reverse direction, using Bash Commands to



62 Q. Fu et al.

Figure 5 Updated Pipeline of the Dataset generation and translation.

predict natural-language sentences. This step created the corresponding
natural language pairs for the generated dataset.

6. Forward translation – The new dataset was then split into training and
testing and used to train and evaluate the model. For the validation, the
best-performing models on the validation dataset was chosen to create
an ensemble.

6.2 Bash Command Synthesis

Our generation stage involved scraping manual page information and assem-
bling together commands from individual components. We used data gath-
ered from the Linux manual pages to form syntax structures to help our
generator understand the relationship between the different components from
which commands are formed. Bash Commands generally consist of utilities
followed by flags and arguments, although complexity can increase dramati-
cally with the introduction of piped and nested commands. With sophisticated
web-scraping techniques and some manual oversight, generated a mapping
of utilities to their corresponding arguments and flags. Likewise, each flag
had corresponding arguments, as the introduction of flags often increased the
number of arguments in a command.

We also scraped the syntax for each utility, creating templates to outline
the context in which each utility is used and the order in which the flags and
arguments appeared. In total, we created mappings and templates for the 38
of the most common utilities appearing in the original NL2Bash dataset.

With the collection of this data, we generated thousands of commands
with combinations of zero to three flags present in each command. The
number of potential commands our generator is capable of producing is in
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the billions. However, we limited the number of commands produced for the
following reasons:

• Quality preservation. While generating commands that include large
numbers of pipes and flags may yield many valid and executable com-
mands, these commands are rare and thus do not commonly appear in the
original training dataset. Other characteristics we tried to preserve from
the original training dataset when synthesizing our own commands were
general similarities in utility distributions and the ratio of commands
with a pipe to those without.

• Practicality. In both of our validation and back-translation processes
described below, the amount of time required to process the dataset
scales with the number of commands in the dataset. After several hun-
dred thousand commands, it becomes less practical to devote further
resources to additional command generation.

In the scaling stage, we scaled the command generation to generally
resemble the utility distribution of the original NL2Bash dataset. For exam-
ple, the original dataset consisted of 63.44% commands that began with the
utility find, so we scaled the number of the find commands generated to
represent a similar percentage of our generated commands.

We attempted to do this scaling for all generated utilities, although we
achieved varying results. The original dataset consisted of 117 different util-
ities, while our generator only supported 38, as shown in Table 4. Moreover,
many of these 38 utilities had poor or inconsistent documentation in the
manual pages, making it hard to accurately collect all available flags and
arguments and generate enough commands to match the distributions desired.

Another limiting factor in the distribution matching was the difficulty
of generating valid commands for certain utilities. As described in the next
section, every generated command was later validated to determine whether
or not to include it in the dataset. The likelihood of commands of certain
utilities being deemed invalid was significant. Generating large quantities of

Table 4 Command generation process

Generation Validation Scaling

Utility Count 38 35 35

Non-piped Commands 570,436 60,926 38,557

Single-piped Commands 500,000 81,787 33,148
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commands for those utilities therefore hindered their representation in the
dataset.

Some utilities had few available flags and a large number of dupli-
cate appearances in the original dataset. For example, the command cd

[Directory] appeared 13 times in the training data as it originally appeared
without placeholders. In the generated dataset, however, there were no dupli-
cate commands, so the command only appeared once, thereby limiting the
representation of that utility in the generated data.

The generated dataset not only included commands with a single utility
but piped commands, as well. These commands consist of multiple utilities
or commands that were concatenated, allowing the sharing of information
during execution. Implementing support for piped commands involved ana-
lyzing the training data for common utility pairs piped together, generating
commands independently for each utility, and joining them together with a
pipe symbol.

For example, the most popular utility pair in the training data was shown
to be (find, xargs). In particular, of the piped commands, a command with
the find utility was often followed by an xargs instruction piped afterward.
Of the commands in the original training dataset, 31.36% of them contained
one or more pipes, with the mean number of pipes in each piped command
being 1.45.

Due to the increased complexity in piped command support, we included
some simplifications in the generation of piped commands. In particular,
70.33% of the piped commands in the training data only contained a single
pipe, so we only supported commands with one pipe. Moreover, in contrast
to commands without pipes, the utility distribution matching for piped com-
mands encompassed fewer utilities. 43.71% of the single pipe commands
in the training data consisted of find commands that were followed by
xargs, grep, and sort commands, so we made the decision to support these
combinations with piped command generation.

The inclusion of piped commands in the generated dataset dramatically
increased the number of available commands to generate. The number of
potential commands to generate scaled exponentially when pipes were intro-
duced, yet this further pressured the validation process that executed all the
generated commands sequentially. As a result, we limited the generation
of piped commands to combinations from 500 different find commands
concatenated to 1,000 different xargs, grep, and sort commands, totaling
at 500,000 commands synthesized in the first stage.
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6.3 Bash Command Validation

To ensure the validity of the generated commands, each command was
replaced with valid placeholder arguments and executed in an isolated envi-
ronment. An example is cd [Directory] being converted to cd abc with
the directory abc being available on the machine. To protect against unde-
fined behavior, commands were executed in a virtual machine environment.

The commands were executed in series and each exit status was measured
by the program. The commands that executed to completion and returned
with exit statuses of zero were set aside, whereas those with non-zero exit
statuses were discarded. The valid commands set aside were then converted
back to generic commands, this time using the placeholders available in
the original NL2Bash dataset. To prevent hanging, the commands validation
script had a timeout of 0.5 seconds for each command before deeming
it invalid. However, the percentage of commands deemed invalid due to
timeouts was insignificantly small.

The percentage of commands that executed to completion with return
statuses of zero varied dramatically for different utilities. Notably, commands
like grep and ls were less prone to errors and approximately 50% of them
were able to complete execution with exit statuses of zero. find, the most
common utility in the training data, had a validity rate of 30.4%. Two utilities,
rev and rename, had no generated commands that ran with exit codes of
zero and were therefore removed from the generated dataset entirely. Overall,
13.3% of the generated commands were deemed valid with validity rates of
10.7% and 16.4% for the non-piped and piped commands, respectively.

An exit status of zero does not guarantee a high-quality command. Com-
mands can complete execution while still not achieving any change in the
environment. For example, a directory change command like cd . might

Figure 6 Valid command rates for generated commands.



66 Q. Fu et al.

execute correctly, yet is a highly impractical command as it keeps the user
in the same directory they started in.

Moreover, commands that fail the validation stage are not inherently
incorrect. Generated commands are generic and placeholders are replaced
for validation, so command failure can be a result of argument replacement.
The virtual machine may not have the same folders, libraries, and files that
are manipulated in a given command, which in some cases resulted in failure.
While execution is an efficient way to discard many incorrectly generated
commands, it does not correctly classify command validity in all cases.

6.4 English Text Synthesis

To generate the corresponding natural language for our generated Bash
Commands, we used the same transformer-based model used in our origi-
nal translation task. This model architecture proved extremely effective in
machine translation tasks, so we reused this architecture for back-translation
as opposed to another lower-performing model. In this case, we trained the
model using data from the original NL2Bash dataset, but in the opposite
direction, i.e., attempting to predict natural language from Bash Commands.

Once the model was trained, we used inference to predict the cor-
responding natural language for each command in the generated dataset.
This completed the natural language component for every validated Bash
Command and concluded the dataset generation process.

6.5 Corpus Description and Statistics

In total, our corpus contained 71,705 valid Bash Commands with correspond-
ing English text. 69.9% of these commands began with the find utility and
the rest were distributed across 34 other utilities, which totals 35 utilities
represented. The eight most popular utilities were find, tar, grep, diff,
ls, file, du, and cp.

All our generated commands contained between zero and three flags
for each utility within the command. Generally, commands without a pipe
contained one utility and commands with a pipe contained two, but in rare
instances for specific utilities, like xargs, nested commands supported the
inclusion of more utilities. As a result, the generated commands contained
between one and four utilities, with the vast majority containing just one
or two. Of the generated commands, 33,148 (46.22%) of them contained a
single pipe, while the rest contained zero pipes. Every command generated
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was executed in a virtual machine command-line environment and was able
to complete execution with an exit status of zero within 0.5 seconds.

6.6 Data Quality

To maximize the quality of the generated commands, we intentionally chose
not to use the same argument-type placeholders as the parser when generating
commands. As described above, the parser defaulted to classifying param-
eters as REGEX, which is a difficult placeholder for executable command
generation since it can take many forms.

Instead, we used 15 argument-type placeholders, many similar to those
from the parser, but generally centered around our goal of creating valid
and executable commands. We wanted to choose argument-type placeholders
that were as specific as possible, while still easily scraped and classified
from manual pages in an automated fashion. As opposed to one argument
type REGEX, we included Pattern, FormattedString, and Separator to
differentiate between the different types of regular expressions and improve
the particularity of the generated commands. This decision was possible
because the manual pages also differentiated between these argument types,
so classifying these flags with these corresponding argument types based on
keywords in the manual pages required no significant extra work.

Although our strategy for dealing with parameters and placeholders dif-
fered at the command generation stage, we did not want this inconsistency to
propagate to our translation. The parser and its corresponding placeholders
were shown effective in preprocessing, so after command generation we
converted the placeholders to match those of the parser to include in our
synthesized dataset. This conversion was generally straightforward, with each
of our chosen placeholders mapped to only one parser placeholder.

Moreover, our validation of all the generated commands through injection
of actual arguments into the placeholders and execution in a virtual machine
environment ensured a high level of quality for our generated commands. Of
our 570,476 no-pipe commands generated, 60,926 commands (10.7%) of our
generated commands executed to completion with exit statuses of zero.

This level of validation was not performed on the initial dataset. We found
that many of the commands provided in the original NL2Bash dataset were
unable to execute to completion with exit statuses of zero in our environment.
This result suggests the possibility of Bash Command generation eventually
yielding a higher percentage of valid commands than those manually verified
by expert freelancers.
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6.7 Comparison to Existing Dataset

As mentioned in Section 6.2, we attempted to match the distribution of the
training data when determining the ratio in which we generated commands
for different utilities. Commands with the find utility amounted to the
majority of the training commands and were the limiting factor when deter-
mining the size of the generated dataset. Despite these efforts, there were key
differences between the existing and generated dataset, as shown in Table 5.

The original dataset contained a large diversity of commands, with 117
different utilities present. Since our generator only supported 38 utilities,
many utilities represented a larger proportion of the dataset to account for
those that were missing. For most of the included utilities, the quantity of
generated commands for a given utility drastically outnumbered the number
of commands for the utility in the original dataset. These utility distributions
of the two datasets are shown in the Figures 7 and 8, where the most common
utilities in the generated dataset are plotted alongside those of the original
dataset.

There are several reasons for the differences in the composition of the
two datasets. For example, the existing dataset contained many duplicate
commands or commands of the same structure applied to different files,
directories, or other arguments. In contrast, this level of duplication did
not occur for synthesized dataset since every Bash Command generated is
unique. This duplication also resulted in popular commands with limited use
cases, such as cd [Directory] being underrepresented in our generated
commands with respect to the existing dataset.

Table 5 New vs. existing dataset
Category Original Generated (Raw) Generated (Valid)
Total Commands 10,348 1,070,436 71,705
Piped Commands 3246 500,000 55,931
Distinct Utilities 117 36 36

Figure 7 Utility distribution in the generated dataset.
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Figure 8 Utility distribution in the original NL2Bash dataset.

More generally, the original dataset contained large quantities of popular
commands and underrepresented more obscure commands or those with
unpopular flags due to the data gathering strategy of searching online forums,
as shown in Figure 8. This strategy resulted in a heavily biased dataset and
little-to-no coverage of some powerful – yet uncommon – flags. Our gen-
erated dataset gave no preference to popularity and treated all flags equally,
although those less likely to result in errors or time-consuming execution
times were often filtered in validation stages. As a result, our dataset was
significantly more diverse, with many unusual flag combinations represented
that were not in the original dataset.

Moreover, our synthesized dataset included up to three flags for each
utility in the command and at most a single pipe within the command.
This configuration meant that every generated command had a maximum of
two utilities and six flags, excluding a small minority of nested commands.
Although the majority of the commands in the existing dataset matched
this demographic, many commands in the training data had several pipes
or contained more than three flags proceeding a utility. This configuration
meant that although the generated dataset included a large number of diverse
commands, the commands were generally shorter in length and minimally
complex.

The last key difference involved the validity of the commands. Since the
entirety of the generated dataset went through the validation process and only
the commands deemed valid were kept, 100% of the resulting dataset was
valid. When the original dataset was run under the same conditions, only
2,360 commands were able to execute with exit statuses of zero within the
0.5-second time frame, for a validity rate of 22.8%.

In summary, the analysis above shows that although the two datasets
were similar in many ways including the utility composition, there were key
differences in utility and flag diversity, as well as validity rates.
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7 Metrics and Error Analysis

This section discusses different metrics and performances of the transformer-
based Magnum model on both datasets. Section 7.1 describes the accuracy
metric and proposes an improved energy metric, Section 7.2 summarizes the
accuracy performance of the Magnum model on the new NL2CMD dataset,
and Section 7.3 analyses the distribution of different error types on the
original dataset.

7.1 Metrics

Below we describe the accuracy metric and proposes an improved energy
metric.

Accuracy: The ideal metric for an evaluation would check if the predicted
Bash Command produces the same result as the reference answer. That metric
is not practical, however, since establishing a simulated environment for 10K
variant situations is beyond the scope of this paper. Instead, our scoring
mechanism specifically checks for structural and syntactic correctness that
“incentivizes precision and recall of the correct utility and its flags, weighted
by the reported confidence” [22]. The metric first defines two terms: Flag
score Si

F and Utility score Si
U .

As shown in Equation (1) [22], the flag score is defined as twice the union
of reference flags and predicted flags number minus the intersection, scaled
by the max number of either reference flags or predicted flags.

Si
F (Fpred, Fref) =

1

N

(
2× |Fpred ∩ Fref| − |Fpred ∪ Fref|

)
(1)

The range of flag scores is between −1 and 1.
As shown in Equation (2) [22], the utility score is defined as the number

of correct reference utilities scaled by capping flag score between 0 and 1,
minus the number of wrong utilities, scaled by the max number of either
reference utilities or predicted utilities.

SU =
∑

i∈[1,T ]

1

T
×
(
|Upred = Uref| ×

1

2

(
1 + Si

F

)
− |Upred 6= Uref|

)
(2)

By summing all the utility scores within a predicted command, the range of
normalized utility scores is between −1 and 1.
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Energy: The measurement and reporting of energy consumption of nat-
ural language programming (NPL) models is a relatively new phe-
nomenon [43] [44]. As Henderson et al. [45] pointed out, part of the reason
stems from the complexities of collecting the result. In particular, according
to Appendix B of Henderson et al. [45], out of 100 NeurIPS papers from
the 2019 proceedings, only 1 measured energy consumption in some way,
whereas 45 measured runtime performance.

To address this gap, the NeurIPS 2020 conference recommended
“energy” as a more direct way of measuring environmental impact. We
found the current energy metric used by the NL2CMD competition was not
ideal, however, since it used estimated attributable power draw (mWatts) to
compute scores. This metric disproportionately punished models with less
inference time.

For example, the GPT-2 model with an inference time of 14.87 seconds
should have consumed a huge amount of energy (considering the model size).
On the leaderboard shown in Table 5 the power metric is even less than the
baseline, which is a much smaller model (GRU) and the inference is 3.24
seconds. Moreover, energymWh can be easily affected by trivially extending
inference time. For example, by simply sleeping 3 seconds after each batch,
the performance of a test submission can be improved from 682 to 88 on the
leaderboard. A potential fix would be to measure the total energy consumed
instead of the power since it punishes both bigger model size and longer
inference.

Validity: Another metric measures the quality of Commands that datasets
used. Our validity rate metric measured the percentage of commands that
were able to execute to completion with exit statuses of zero within a
0.5-second time frame when replaced with standard replacement values.
Although this metric is not entirely reliable due to the complex nature
of computers behaving differently and containing different file systems, it
provided valuable insight into the general correctness of the commands in the
dataset.

Commands that passed the validity test demonstrated a baseline level of
error aversion and proved they did not result in undefined behavior under
the given conditions. Commands that did not pass the validity test were not
implicitly incorrect, however, as they could have executed correctly on a
different machine or simply required longer than the allotted 0.5 seconds to
execute.
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Table 6 Comparison of model performance across datasets
Training Dataset Test Dataset Accuracy Score
NL2Bash NL2Bash 52.3%
NLC2CMD NLC2CMD 31.6%
NLC2CMD NL2Bash −13%
NL2Bash NLC2CMD −6.67%
NLC2CMD+NL2Bash NL2Bash 48%
NLC2CMD+NL2Bash NLC2CMD 31.7%

7.2 Synthesized Dataset Results

We split our generated dataset 80/20 into training and testing sets, respec-
tively, before training our transformer-based model on the training dataset.
We then evaluated our results and achieved an accuracy score of 31.63%,
as shown in Table 6. This relatively low score demonstrates the difficulty of
the dataset. We conjecture this result occurred because the dataset contained
utility-flag combinations that were not present in the original dataset. These
combinations resulted in inaccurate back-translations for the natural language
components, which made predictions for the model extremely hard.

We also suspect over-fitting for the model trained on the NL2Bash dataset
due to its relatively small size. We found that the model cross-trained on both
datasets demonstrated good performance on both test sets, while the model
trained on a single dataset performed poorly on the test set of another dataset.
This result again highlights the importance of having large and diverse dataset
for increasing model robustness.

7.3 Error Analysis

Previous research [9] listed the top three causes of incorrect predictions
as sparse training data, utility errors, and flag errors. Since sparse training
data is a subjective metric, we only analyzed the incorrect utility and flag
predictions. We used a separate, independently-created testing dataset of
1,867 samples (previous work manually analyzed 100 samples from the dev
dataset collected the same way as the original training dataset) from the
original training dataset and evaluated the accuracy results in more detail.

Figure 9 shows that over two-thirds of all errors are utility errors, so the
variety of flags is less significant than having enough data for each utility.
This result shows why our new dataset resulted in a significantly lower
accuracy score. In particular, utilities that are less common in the original
dataset have larger quantities of commands.
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Figure 9 Percentage of utility and flag errors on original dataset.

Figure 10 (a) Distribution of reference utilities that are wrongly predicted. (b) Distribution
of wrongly predicted utilities.

Figure 10 shows that among the top six incorrectly predicted utilities, ls
and grep are the most frequently confused with find. This confusion was
expected since the functionality of these three utilities overlaped significantly
and were among the most frequently used Bash Commands. By manually
examining the incorrect predictions, we also found that these three utilities
appear in many piped commands, which helps explain the large proportion
they comprised in all the incorrectly predicted utilities. Our synthesized
dataset contained both larger absolute and relative quantities of piped com-
mands, so this result further underscored the difficulty of the model for
predicting them correctly.

8 Concluding Remarks

This paper presented several key findings for the semantic parsing research
community. We first described an updated workflow for a state-of-the-art
machine translation model to generate accurate and practical commands. We
then introduced post-processing to replace placeholders in translated Bash
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Commands with the original parameters provided in the natural language.
Our final contribution was a new dataset generated from scratch and an
accompanying method for generating additional data.

Our work provides essential foundations for building an automated sys-
tem that translates natural language to Bash Commands. We were the first
to (1) create an entirely valid Bash Command dataset from scratch and
(2) provide a baseline accuracy of 31.6% for translating natural language
to Bash Commands on the new dataset. Our code is available in GitHub
repository [46]. The following is a summary of our lessons learned gleaned
from the research project:

• It is feasible to synthesis a large dataset of Bash Commands and cor-
responding English pair by adopting back-translation. Generation
from scratch is a major milestone and provides significant advantages
over prior augmentation strategies. Our approach provided new oppor-
tunities for the generation of further natural language to computer code
datasets and improving the effectiveness of Bash Command machine
translation.

• To make translated commands practical they must be executable,
therefore validity testing is important. The conversion from a Bash
Command template to an executable (or nearly executable) command
shows both progress and promise of the usability and practicality of
our translation pipeline. A more complete and streamlined process of
converting natural language to valid, executable commands will become
a larger focus as model accuracy continues to improve.

• It is necessary to create a hold-out dataset3 that is sourced in a dif-
ferent way to test model generality. Although our dataset was six times
larger then the original dataset and more diverse, the model exhibiting
good performance on the test set failed to generalize to the original
dataset and vice versa. As a result, the current datasets of Natural
language to Bash Commands are still relatively small and insufficiently
diverse to make robust model that generalize well to a hold-out set. This
result could yield further developments and testing of different models
to maximize performance on both our dataset and the original dataset.

3A hold-out dataset is sourced differently from the original data, so it is more challenging
compared to test-set, which is sourced the same way as the training data and likely has the
same distribution.
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