Parameter Extraction of PV Solar Cell: A Comparative Assessment Using Newton Raphson, Simulated Annealing and Particle Swarm Optimization
Keywords:
PV Cell, Simulated Annealing, Newton Raphson, Particle Swarm Optimization, Single-Diode ModelAbstract
Proper modelling of PV cell is important to calculate its unknown parameters close to the accurate values, to
attain the I-V characteristic curve close to the hardware model. This can help for simulation, computing
efficiency, maximum power point tracing design, optimization and regulation of PV system. This paper
estimates single diode PV model parameters such as photocurrent, the saturation current, the series resistance,
the shunt resistance and the ideality factor. The estimation is done by three different optimization methods for
single-diode model in an attempt to judge which method is surpassing in terms of convergence time and relative
error. The first method Newton-Raphson is a numerical method based on gradient descent approach, while the
second and third methods are evolutionary methods, simulated annealing and particle swarm optimization
respectively. It was observed that particle swarm optimization algorithm is best among the methods and
simulated annealing showed the worse performance.
Downloads
References
Almonacid, F. J. M. F., Rus, C., Hontoria, L., & Muñoz, F. J. (2010). Characterisation of PV CIS module by
artificial neural networks. A comparative study with other methods. Renewable Energy, 35(5), 973-980.
Almonacid, F., Rus, C., Hontoria, L., Fuentes, M., & Nofuentes, G. (2009). Characterisation of Si-crystalline
PV modules by artificial neural networks. Renewable Energy, 34(4), 941-949.
Appelbaum, J., & Peled, A. (2014). Parameters extraction of solar cells–A comparative examination of three
methods. Solar Energy Materials and Solar Cells, 122, 164-173.
Askarzadeh, A., & dos Santos Coelho, L. (2015). Determination of photovoltaic modules parameters at different
operating conditions using a novel bird mating optimizer approach. Energy Conversion and Management, 89,
-614.
Awadallah, M. A., & Venkatesh, B. (2015, March). Estimation of PV module parameters from datasheet
information using optimization techniques. In Industrial Technology (ICIT), 2015 IEEE International
Conference on (pp. 2777-2782). IEEE.
Chan, D. S. H., Phillips, J. R., & Phang, J. C. H. (1986). A comparative study of extraction methods for solar
cell model parameters. Solid-State Electronics, 29(3), 329-337.
Journal of Graphic Era University
Vol. 7, Issue 2, 119-131, 2019
ISSN: 0975-1416 (Print), 2456-4281 (Online)
De Soto, W., Klein, S. A., & Beckman, W. A. (2006). Improvement and validation of a model for photovoltaic
array performance. Solar Energy, 80(1), 78-88.
Dizqah, A. M., Maheri, A., & Busawon, K. (2014). An accurate method for the PV model identification based
on a genetic algorithm and the interior-point method. Renewable Energy, 72, 212-222.
Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In Micro Machine
and Human Science, 1995. MHS'95., Proceedings of the Sixth International Symposium on (pp. 39-43). IEEE.
El-Naggar, K. M., AlRashidi, M. R., AlHajri, M. F., & Al-Othman, A. K. (2012). Simulated annealing
algorithm for photovoltaic parameters identification. Solar Energy, 86(1), 266-274.
Enebish, N., Agchbayar, D., Dorjkhand, S., Baatar, D., & Ylemj, I. (1993). Numerical analysis of solar cell
current-voltage characteristics. Solar Energy Materials and Solar Cells, 29(3), 201-208.
Ghani, F., & Duke, M. (2011). Numerical determination of parasitic resistances of a solar cell using the Lambert
W-function. Solar Energy, 85(9), 2386-2394.
Ghani, F., Duke, M., & Carson, J. (2013). Numerical calculation of series and shunt resistances and diode
quality factor of a photovoltaic cell using the Lambert W-function. Solar Energy, 91, 422-431.
Hunt, T. (2015). The solar singularity is nigh. Greentech Media. Retrieved, 29.
Ishaque, K., & Salam, Z. (2011). An improved modeling method to determine the model parameters of
photovoltaic (PV) modules using differential evolution (DE). Solar Energy, 85(9), 2349-2359.
Ishaque, K., Salam, Z., Taheri, H., & Shamsudin, A. (2011). A critical evaluation of EA computational methods
for Photovoltaic cell parameter extraction based on two diode model. Solar Energy, 85(9), 1768-1779.
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science,
(4598), 671-680.
Lun, S. X., Du, C. J., Yang, G. H., Wang, S., Guo, T. T., Sang, J. S., & Li, J. P. (2013). An explicit approximate
I–V characteristic model of a solar cell based on padé approximants. Solar Energy, 92, 147-159.
Ma, J., Ting, T. O., Man, K. L., Zhang, N., Guan, S. U., & Wong, P. W. (2013). Parameter estimation of
photovoltaic models via cuckoo search. Journal of Applied Mathematics, 2013.
Mahmoud, Y. A., Xiao, W., & Zeineldin, H. H. (2013). A parameterization approach for enhancing PV model
accuracy. IEEE Transactions on Industrial Electronics, 60(12), 5708-5716.
Nayak, B. K., Mohapatra, A., & Mohanty, K. B. (2013, December). Parameters estimation of photovoltaic
module using nonlinear least square algorithm: A comparative study. In India Conference (INDICON), 2013
Annual IEEE (pp. 1-6). IEEE.
Ortiz-Conde, A., Sánchez, F. J. G., & Muci, J. (2006). New method to extract the model parameters of solar
cells from the explicit analytic solutions of their illuminated I–V characteristics. Solar Energy Materials and
Solar Cells, 90(3), 352-361.
Quaschning, V., & Hanitsch, R. (1996). Numerical simulation of current-voltage characteristics of photovoltaic
systems with shaded solar cells. Solar Energy, 56(6), 513-520.
Siddiqui, M. U., & Abido, M. (2013). Parameter estimation for five-and seven-parameter photovoltaic electrical
models using evolutionary algorithms. Applied Soft Computing, 13(12), 4608-4621.
Silva, E. A., Bradaschia, F., Cavalcanti, M. C., & Nascimento, A. J. (2016). Parameter estimation method to
improve the accuracy of photovoltaic electrical model. IEEE Journal of Photovoltaics, 6(1), 278-285.
Soon, J. J., & Low, K. S. (2012). Photovoltaic model identification using particle swarm optimization with
inverse barrier constraint. IEEE Transactions on Power Electronics, 27(9), 3975-3983.
Journal of Graphic Era University
Vol. 7, Issue 2, 119-131, 2019
ISSN: 0975-1416 (Print), 2456-4281 (Online)
Tivanov, M., Patryn, A., Drozdov, N., Fedotov, A., & Mazanik, A. (2005). Determination of solar cell
parameters from its current–voltage and spectral characteristics. Solar Energy Materials and Solar Cells, 87(1-
, 457-465.
Villalva, M. G., Gazoli, J. R., & Ruppert Filho, E. (2009). Comprehensive approach to modeling and simulation
of photovoltaic arrays. IEEE Transactions on Power Electronics, 24(5), 1198-1208.
Wei, H., Cong, J., Lingyun, X., & Deyun, S. (2011, April). Extracting solar cell model parameters based on
chaos particle swarm algorithm. In Electric Information and Control Engineering (ICEICE), 2011 International
Conference on (pp. 398-402). IEEE.
Xiao, W., Dunford, W. G., & Capel, A. (2004, June). A novel modeling method for photovoltaic cells. In Power
Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual (Vol. 3, pp. 1950-1956). IEEE.
Ye, M., Wang, X., & Xu, Y. (2009). Parameter extraction of solar cells using particle swarm optimization.
Journal of Applied Physics, 105(9), 094502