Weighted Bilinear Interpolation Based Generic Multispectral Image Demosaicking Method
Keywords:
Multispectral Images, Demosaicking, Interpolation, Weighted Bilinear, Multispectral Filter Array (MSFA).Abstract
Multispectral imaging systems acquire images having more than three spectral bands and these images play
crucial role in various applications such as remote sensing, medical imaging, military surveillance, vision
inspection for food quality control, archaeological surveys etc. But the high cost of multispectral imaging
systems limit their usage. Similar to the use of color-filter-array interpolation methods in development of low
cost RGB color cameras, researchers have been exploring the use of multispectral image demosaicking
technologies for developing affordable multispectral imaging systems. In this paper, we present a generic simple
weighted bilinear interpolation based multispectral image demosaicking method. This method is applicable for
any number of spectral bands image, however it critically depends upon the multispectral filter array that needs
to be carefully designed for the weighted bilinear method to be easily applicable. We use two publically
available multispectral image datasets for the performance evaluation of the proposed approach and present
some interesting insights derived from the experimental results
Downloads
References
Addesso, P., Longo, M., Montone, R., Restaino, R., & Vivone, G. (2017). Interpolation and combination rules
for the temporal and spatial enhancement of SEVIRI and MODIS thermal image sequences. International
Journal of Remote Sensing, 38(7), 1889-1911.
Aggarwal, H. K., & Majumdar, A. (2014, July). Compressive sensing multi-spectral demosaicing from single
sensor architecture. In 2014 IEEE China Summit & International Conference on Signal and Information
Processing (ChinaSIP) (pp. 334-338). IEEE.
Aggarwal, H.K., & Majumdar, A. (2015 January). Multi-spectral demosaicking: A joint-sparse elastic-net
formulation. Eighth International Conference on Advances in Pattern Recognition (ICAPR) (pp. 1-5). Indian
Statistical Institute, Kolkata, India.
Bayer, Bryce E. (1976). Color imaging array. U.S. Patent 3971065.
Brauers, J., & Aach, T. (2006). A color filter array based multispectral camera. Proceeding of Workshop
Farbbildverarbeitung. German Color Group.
Brennera, C., Thiema, C.E., Wizemannb, H.D., Bernhardta, M., & Schulza, K. (2017). Estimating spatially
distributed turbulent heat fluxes from high-resolution thermal imagery acquired with a UAV system.
International Journal of Remote Sensing, 38(8), 3003-3026.
CAVE Projects: Multispectral Image Database. Available:
http://www.cs.columbia.edu/CAVE/databases/multispectral/
Galidaki, G., Zianis, D., Gitas, I., Radoglou, K., Karathanassi, V., Tsakiri–Strati, Woodhouse, I., & Mallinis, G.
(2017). Vegetation biomass estimation with remote sensing: focus on forest and other wooded land over the
Mediterranean ecosystem. International Journal of Remote Sensing, 38(7), 1940-1966.
Goyal, P., Khanna, N., Dosad, J., & Gupta, M. (2014) Impact of neighborhood size on median filter based color
filter array interpolation. Mathematics in Engineering, Science and Aerospace (MESA). 5(3), 265-274.
Jaiswal, S.P., Fang, L., Jakhetiya, V., Pang, J., Mueller, K., Au, O.C. (2016). Adaptive multispectral
demosaicking based on frequency domain analysis of spectral correlation. IEEE Transactions on Image
Processing. 26(2), 953-968.
Journal of Graphic Era University
Vol. 7, Issue 2, 108-118, 2019
ISSN: 0975-1416 (Print), 2456-4281 (Online)
Kalkan, H., Tekinay, C., & Yardimci, Y. (2010 September). Classification of multispectral satellite land cover
data by 3D local discriminant bases algorithm. Proceeding of 25th International Symposium on Computer and
Information Sciences (62, 237-240). London, UK, Springer, Dordrecht.
Li, X., Gunturk, B., & Zhang, L. (2008, January). Image demosaicing: A systematic survey. In Visual
Communications and Image Processing 2008 (Vol. 6822, p. 68221J). International Society for Optics and
Photonics.
Losson, O., Macaire, L., & Yang, Y. (2010). Comparison of color demosaicing methods. In Advances in
Imaging and Electron Physics (Vol. 162, pp. 173-265). Elsevier.
MacLachlan, A., Roberts, G., Biggs, E., & Boruff, B. (2017). Subpixel land-cover classification for improved
urban area estimates using Landsat. International Journal of Remote Sensing, 38(20), 5763-5792.
Mangai, U.G., Samanta, S., Das, S., Chowdhury, P.R., Varghese, K., & Kalra, M. (2010 Nov). A hierarchical
multi-classifier framework for landform segmentation using multi-spectral satellite images-A case study over
the Indian subcontinent. Proceeding of IEEE Fourth Pacific-Rim Symposium on Image and Video Technology
(PSIVT) (pp. 306-313). Nanyang Technological University (NTU), Singapore.
Miao, L., & Qi, H. (2006). The design and evaluation of a generic method for generating mosaicked
multispectral filter arrays. IEEE Transactions on Image Processing. 15(9), 2780-2791.
Miao, L., Qi, H., Ramanath, R., & Snyder, W.E. (2006). Binary tree-based generic demosaicking algorithm for
multispectral filter arrays. IEEE Transactions on Image Processing. 15(11), 3550-3558.
Mihoubi, S., Losson, O., Mathon, B., & Macaire, L. (2015 November). Multispectral demosaicking using
intensity-based spectral correlation. Proceeding of International Conference Image Processing Theory, Tools
Applications (IPTA) (pp. 461466). IEEE
Mizutani, J., Ogawa, S., Shinoda, K., Hasegawa, M., & Kato, S. (2014 December). Multispectral demosaicking
algorithm based on interchannel correlation. Visual Communications and Image Processing Conference (pp.
-477). IEEE, Valletta, Malta.
Monno, Y., Kikuchi, S., Tanaka, M., & Okutomi, M. (2015). A practical one shot multispectral imaging system
using a single image sensor. IEEE Transaction on Image Processing. 24(10), 30483059.
Monno, Y., Tanaka, M., & Okutomi, M., (2011 September). Multispectral demosaicking using adaptive kernel
upsampling. Proceeding of 18th IEEE International Conference on Image Processing (pp. 3157-3160). Brussels,
Belgium.
Monno, Y., Tanaka, M., & Okutomi, M. (2012 January). Multispectral demosaicking using guided filter.
Proceeding of SPIE (pp. 82990O). 8299.
Pearce, A.K., Fuchs, A.V. Fletcher, N.L., & Thurecht, K.J. (2016). Targeting nanomedicines to prostate cancer:
evaluation of specificity of ligands to two different receptors in vivo. Pharmaceutical Research. 33(10), 2388-
Popescu, A.C., & Farid, H. (2005). Exposing digital forgeries in color filter array interpolated images. IEEE
Transactions Signal processing. 53(10), 3948–3959.
Shinoda, K., Ogawa, S., Yanagi, Y., Hasegawa, M., Kato, S., Ishikawa, M., Komagata, H., & Kobayashi, N.,
(2015 December). Multispectral filter array and demosaicking for pathological images. Proceeding of 2015
Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA) (pp.
-703). IEEE, Hong Kong, China.
Wang, Z., Bovik, A.C., Sheikh, H.R., & Simoncelli, E.P. (2004). Image quality assessment: From error
visibility to structure similarity. IEEE Transaction on Image Processing. 13(4), 600-612.
Journal of Graphic Era University
Vol. 7, Issue 2, 108-118, 2019
ISSN: 0975-1416 (Print), 2456-4281 (Online)
Yamaguchi, M., Haneishi, H., Fukuda, Kishimoto, J. Kanazawa, Tsuchida, H. Iwama, R., & Ohyama, N., (2006
January). High-fidelity video and still-image communication based on spectral information: natural vision
system and its applications. Proceeding of SPIE Spectral Imaging: Eighth International Symposium on
Multispectral Color Science (pp. 129-140). San Jose, California, United States