Weighted Bilinear Interpolation Based Generic Multispectral Image Demosaicking Method

Authors

  • Medha Gupta Computer Science and Engineering
  • Mangey Ram Computer Science and Engineering

Keywords:

Multispectral Images, Demosaicking, Interpolation, Weighted Bilinear, Multispectral Filter Array (MSFA).

Abstract

Multispectral imaging systems acquire images having more than three spectral bands and these images play
crucial role in various applications such as remote sensing, medical imaging, military surveillance, vision
inspection for food quality control, archaeological surveys etc. But the high cost of multispectral imaging
systems limit their usage. Similar to the use of color-filter-array interpolation methods in development of low
cost RGB color cameras, researchers have been exploring the use of multispectral image demosaicking
technologies for developing affordable multispectral imaging systems. In this paper, we present a generic simple
weighted bilinear interpolation based multispectral image demosaicking method. This method is applicable for
any number of spectral bands image, however it critically depends upon the multispectral filter array that needs
to be carefully designed for the weighted bilinear method to be easily applicable. We use two publically
available multispectral image datasets for the performance evaluation of the proposed approach and present
some interesting insights derived from the experimental results

Downloads

Download data is not yet available.

References

Addesso, P., Longo, M., Montone, R., Restaino, R., & Vivone, G. (2017). Interpolation and combination rules

for the temporal and spatial enhancement of SEVIRI and MODIS thermal image sequences. International

Journal of Remote Sensing, 38(7), 1889-1911.

Aggarwal, H. K., & Majumdar, A. (2014, July). Compressive sensing multi-spectral demosaicing from single

sensor architecture. In 2014 IEEE China Summit & International Conference on Signal and Information

Processing (ChinaSIP) (pp. 334-338). IEEE.

Aggarwal, H.K., & Majumdar, A. (2015 January). Multi-spectral demosaicking: A joint-sparse elastic-net

formulation. Eighth International Conference on Advances in Pattern Recognition (ICAPR) (pp. 1-5). Indian

Statistical Institute, Kolkata, India.

Bayer, Bryce E. (1976). Color imaging array. U.S. Patent 3971065.

Brauers, J., & Aach, T. (2006). A color filter array based multispectral camera. Proceeding of Workshop

Farbbildverarbeitung. German Color Group.

Brennera, C., Thiema, C.E., Wizemannb, H.D., Bernhardta, M., & Schulza, K. (2017). Estimating spatially

distributed turbulent heat fluxes from high-resolution thermal imagery acquired with a UAV system.

International Journal of Remote Sensing, 38(8), 3003-3026.

CAVE Projects: Multispectral Image Database. Available:

http://www.cs.columbia.edu/CAVE/databases/multispectral/

Galidaki, G., Zianis, D., Gitas, I., Radoglou, K., Karathanassi, V., Tsakiri–Strati, Woodhouse, I., & Mallinis, G.

(2017). Vegetation biomass estimation with remote sensing: focus on forest and other wooded land over the

Mediterranean ecosystem. International Journal of Remote Sensing, 38(7), 1940-1966.

Goyal, P., Khanna, N., Dosad, J., & Gupta, M. (2014) Impact of neighborhood size on median filter based color

filter array interpolation. Mathematics in Engineering, Science and Aerospace (MESA). 5(3), 265-274.

Jaiswal, S.P., Fang, L., Jakhetiya, V., Pang, J., Mueller, K., Au, O.C. (2016). Adaptive multispectral

demosaicking based on frequency domain analysis of spectral correlation. IEEE Transactions on Image

Processing. 26(2), 953-968.

Journal of Graphic Era University

Vol. 7, Issue 2, 108-118, 2019

ISSN: 0975-1416 (Print), 2456-4281 (Online)

Kalkan, H., Tekinay, C., & Yardimci, Y. (2010 September). Classification of multispectral satellite land cover

data by 3D local discriminant bases algorithm. Proceeding of 25th International Symposium on Computer and

Information Sciences (62, 237-240). London, UK, Springer, Dordrecht.

Li, X., Gunturk, B., & Zhang, L. (2008, January). Image demosaicing: A systematic survey. In Visual

Communications and Image Processing 2008 (Vol. 6822, p. 68221J). International Society for Optics and

Photonics.

Losson, O., Macaire, L., & Yang, Y. (2010). Comparison of color demosaicing methods. In Advances in

Imaging and Electron Physics (Vol. 162, pp. 173-265). Elsevier.

MacLachlan, A., Roberts, G., Biggs, E., & Boruff, B. (2017). Subpixel land-cover classification for improved

urban area estimates using Landsat. International Journal of Remote Sensing, 38(20), 5763-5792.

Mangai, U.G., Samanta, S., Das, S., Chowdhury, P.R., Varghese, K., & Kalra, M. (2010 Nov). A hierarchical

multi-classifier framework for landform segmentation using multi-spectral satellite images-A case study over

the Indian subcontinent. Proceeding of IEEE Fourth Pacific-Rim Symposium on Image and Video Technology

(PSIVT) (pp. 306-313). Nanyang Technological University (NTU), Singapore.

Miao, L., & Qi, H. (2006). The design and evaluation of a generic method for generating mosaicked

multispectral filter arrays. IEEE Transactions on Image Processing. 15(9), 2780-2791.

Miao, L., Qi, H., Ramanath, R., & Snyder, W.E. (2006). Binary tree-based generic demosaicking algorithm for

multispectral filter arrays. IEEE Transactions on Image Processing. 15(11), 3550-3558.

Mihoubi, S., Losson, O., Mathon, B., & Macaire, L. (2015 November). Multispectral demosaicking using

intensity-based spectral correlation. Proceeding of International Conference Image Processing Theory, Tools

Applications (IPTA) (pp. 461466). IEEE

Mizutani, J., Ogawa, S., Shinoda, K., Hasegawa, M., & Kato, S. (2014 December). Multispectral demosaicking

algorithm based on interchannel correlation. Visual Communications and Image Processing Conference (pp.

-477). IEEE, Valletta, Malta.

Monno, Y., Kikuchi, S., Tanaka, M., & Okutomi, M. (2015). A practical one shot multispectral imaging system

using a single image sensor. IEEE Transaction on Image Processing. 24(10), 30483059.

Monno, Y., Tanaka, M., & Okutomi, M., (2011 September). Multispectral demosaicking using adaptive kernel

upsampling. Proceeding of 18th IEEE International Conference on Image Processing (pp. 3157-3160). Brussels,

Belgium.

Monno, Y., Tanaka, M., & Okutomi, M. (2012 January). Multispectral demosaicking using guided filter.

Proceeding of SPIE (pp. 82990O). 8299.

Pearce, A.K., Fuchs, A.V. Fletcher, N.L., & Thurecht, K.J. (2016). Targeting nanomedicines to prostate cancer:

evaluation of specificity of ligands to two different receptors in vivo. Pharmaceutical Research. 33(10), 2388-

Popescu, A.C., & Farid, H. (2005). Exposing digital forgeries in color filter array interpolated images. IEEE

Transactions Signal processing. 53(10), 3948–3959.

Shinoda, K., Ogawa, S., Yanagi, Y., Hasegawa, M., Kato, S., Ishikawa, M., Komagata, H., & Kobayashi, N.,

(2015 December). Multispectral filter array and demosaicking for pathological images. Proceeding of 2015

Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA) (pp.

-703). IEEE, Hong Kong, China.

Wang, Z., Bovik, A.C., Sheikh, H.R., & Simoncelli, E.P. (2004). Image quality assessment: From error

visibility to structure similarity. IEEE Transaction on Image Processing. 13(4), 600-612.

Journal of Graphic Era University

Vol. 7, Issue 2, 108-118, 2019

ISSN: 0975-1416 (Print), 2456-4281 (Online)

Yamaguchi, M., Haneishi, H., Fukuda, Kishimoto, J. Kanazawa, Tsuchida, H. Iwama, R., & Ohyama, N., (2006

January). High-fidelity video and still-image communication based on spectral information: natural vision

system and its applications. Proceeding of SPIE Spectral Imaging: Eighth International Symposium on

Multispectral Color Science (pp. 129-140). San Jose, California, United States

Downloads

Published

2023-02-28

How to Cite

Gupta, M., & Ram, M. (2023). Weighted Bilinear Interpolation Based Generic Multispectral Image Demosaicking Method. Journal of Graphic Era University, 7(2), 108–118. Retrieved from https://riverpublishersjournal.com/index.php/JGEU/article/view/58

Issue

Section

Articles