Dielectric Analysis of PVDF-CNF Conductive Polymer Nanocomposite for EMI Shielding Application
Keywords:
Conductivity, Dielectric, Electromagnetic Shielding, Polymer NanocompositeAbstract
Carbon based Nano fillers polymer nanocomposites are the advance polymer materials used in electrical device
applications. Among them carbon nanofibers are highly preferred because of their high aspect ratio, long fiber
range, high contact surface area, higher electrical conduction with uniform dispersion property. In the present
work we have developed a thin (PVDF-CNF) conductive polymer nanocomposite by solvent casting technique.
Here we have focused on understating the dispersion effect on electrical conductivity and for electromagnetic
interference (EMI). The developed conductive polymer nanocomposite showed uniform dispersion with higher
conductivity and higher dielectric properties. The newly developed composite has significant applications in the
field of sensor and shielding.
Downloads
References
Ahmad, K., Pan, W., & Shi, S. L. (2006). Electrical conductivity and dielectric properties of multiwalled carbon
nanotube and alumina composites. Applied Physics Letters, 89 (13), 133122.
Al-Saleh, M. H., & Sundararaj, U. (2009). Electromagnetic interference shielding mechanisms of CNT/polymer
composites. Carbon, 47(7), 1738-1746.
Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., & Chen, Y. (2008). Evaluation of solution-processed
reduced graphene oxide films as transparent conductors. ACS Nano, 2(3), 463-470.
Cipriano, B. H., Kota, A. K., Gershon, A. L., Laskowski, C. J., Kashiwagi, T., Bruck, H. A., & Raghavan, S. R.
(2008). Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt
annealing. Polymer, 49(22), 4846-4851.
Collins, S. A., Padilla, C. E., Notestine, R. J., Von Flotow, A. H., Schmitz, E., & Ramey, M. (1992). Design,
manufacture, and application to space robotics of distributed piezoelectric film sensors. Journal of Guidance,
Control, and Dynamics, 15(2), 396-403.
Fonseca, C. P., Benedetti, J. E., & Neves, S. (2006). Poly (3-methyl thiophene)/PVDF composite as an electrode
for supercapacitors. Journal of Power Sources, 158(1), 789-794.
Gu, H., Zhao, Y., & Wang, M. L. (2005). A wireless smart PVDF sensor for structural health monitoring.
Structural Control and Health Monitoring: The Official Journal of the International Association for Structural
Control and Monitoring and of the European Association for the Control of Structures, 12(3‐4), 329-343.
Hammes, P. C. A., & Regtien, P. P. L. (1992). An integrated infrared sensor using the pyroelectric polymer PVDF.
Sensors and Actuators A: Physical, 32(1-3), 396-402.
Hernández, J. J., García-Gutiérrez, M. C., Nogales, A., Rueda, D. R., Kwiatkowska, M., Szymczyk, A., Roslaniec,
Z., Concheso, A., Guinea, I., & Ezquerra, T. A. (2009). Influence of preparation procedure on the conductivity
and transparency of SWCNT-polymer nanocomposites. Composites Science and Technology, 69(11-12), 1867-
Kim, H., Abdala, A. A., & Macosko, C. W. (2010). Graphene/polymer nanocomposites. Macromolecules, 43(16),
-6530.
Kumar, B., Scanlon, L. G., & Spry, R. J. (2001). On the origin of conductivity enhancement in polymer-ceramic
composite electrolytes. Journal of Power Sources, 96(2), 337-342.
Luo, H., & Hanagud, S. (1999). PVDF film sensor and its applications in damage detection. Journal of Aerospace
Engineering, 12(1), 23-30.
Li, Y. J., Xu, M., Feng, J. Q., & Dang, Z. M. (2006). Dielectric behavior of a metal-polymer composite with low
percolation threshold. Applied Physics Letters, 89(7), 072902.
Prasad, B., Arora, S., Rathi, V., Panwar, V., & Patil, P. P. (2019). Modelling of PVDF/CNF conducting polymer
nanocomposite. International Journal of Mathematical, Engineering and Management Sciences, 4(3), 786-794.
Prasad, B., Panwar, V., Chaturvedi, M., Rathi, V., Gill, F. S., Sharma, K., & Patil, P. P., (2018). Development of
Conductive Nanocomposite for Sensing Application, 7(3.12), 1025-1029.
Journal of Graphic Era University
Vol. 8, Issue 1, 33-41, 2020
ISSN: 0975-1416 (Print), 2456-4281 (Online)
Qi, L., Lee, B. I., Chen, S., Samuels, W. D., & Exarhos, G. J. (2005). High‐dielectric‐constant silver–epoxy
composites as embedded dielectrics. Advanced Materials, 17(14), 1777-1781.
Rathi, V., Panwar, V., Anoop, G., Chaturvedi, M., Sharma, K., & Prasad, B. (2018). Flexible, thin composite film
to enhance the electromagnetic compatibility of biomedical electronic devices. IEEE Transactions on
Electromagnetic Compatibility, 61(4), 1033 - 1041.
Shahinpoor, M., & Mojarrad, M. (2000). U.S. Patent No. 6,109,852. Washington, DC: U.S. Patent and Trademark
Office.
Sumita, M., Sakata, K., Asai, S., Miyasaka, K., & Nakagawa, H. (1991). Dispersion of fillers and the electrical
conductivity of polymer blends filled with carbon black. Polymer Bulletin, 25(2), 265-271.
Shen, Y., Lin, Y. H., & Nan, C. W. (2007). Interfacial effect on dielectric properties of polymer nanocomposites
filled with core/shell‐structured particles. Advanced Functional Materials, 17(14), 2405-2410.
Sun, L. L., Li, B., Zhao, Y., Mitchell, G., & Zhong, W. H. (2010). Structure-induced high dielectric constant and
low loss of CNF/PVDF composites with heterogeneous CNF distribution. Nanotechnology, 21(30), 305702.
Tang, C. W., Li, B., Sun, L., Lively, B., & Zhong, W. H. (2012). The effects of Nano fillers, stretching and
recrystallization on microstructure, phase transformation and dielectric properties in PVDF nanocomposites.
European Polymer Journal, 48(6), 1062-1072.
Wang, F., Tanaka, M., & Chonan, S. (2003). Development of a PVDF piezo polymer sensor for unconstrained in-
sleep cardiorespiratory monitoring. Journal of Intelligent Material Systems and Structures, 14(3), 185-190.
Wang, L., & Dang, Z. M. (2005). Carbon nanotube composites with high dielectric constant at low percolation
threshold. Applied Physics Letters, 87(4), 042903.
Wong, C. P., & Bollampally, R. S. (1999). Thermal conductivity, elastic modulus, and coefficient of thermal
expansion of polymer composites filled with ceramic particles for electronic packaging. Journal of Applied
Polymer Science, 74(14), 3396-3403.
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide:
synthesis, properties, and applications. Advanced Materials, 22(35), 3906-3924