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Abstract

Mathematical modelling is a powerful tool that bridges the gap between
theoretical concepts and real-world phenomena. It involves the development
of mathematical equations, algorithms, and computational techniques to
describe, analyse, and predict complex systems across various disciplines.
Researchers are creating mathematical models based on actual events to
meet the demands of this scientific era. The main aim of mathematical
modelling is to gain understanding into complex systems, make predictions,
and optimize processes. By using mathematical equations, scientists and
researchers can simulate and analyse various scenarios, explore the effects of
different parameters, and make informed decisions. Mathematical models can
provide a better understanding of the given mechanisms governing the system
and help uncover relationships and patterns that may not be immediately
apparent. Policymakers use mathematical models to inform their choices
when deciding on public health interventions like lockdowns, social isolation
tactics, and vaccination rollout plans.
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Figure 1 Process of mathematical modelling.

1 Introduction

The process of representing real-world phenomena or systems using mathe-
matical actions, formulas, or algorithms is called mathematical modelling. It
is a way to describe, analyse, and predict the behaviour of complex systems or
processes by translating them into a mathematical framework. It is used in a
wide range of areas including engineering, biology, physics, economics, and
social sciences. By creating mathematical models, researchers can simulate
and predict the behaviour of complex systems, test hypotheses, and gain
insights into the underlying mechanisms as shown in Figure 1. Mathematical
modelling involves constructing a set of equations that shows the behaviour of
a system, and then solving those equations to predict system behaviour under
different conditions. This allows researchers to explore the effects of chang-
ing variables and parameters on the system, and to identify optimal solutions
or strategies [1]. Mathematical modelling has many practical applications,
from designing new technologies to predicting the spread of diseases, and it
continues to be an important area of research in many fields [2].

1.1 Steps Involved in Mathematical Modelling

The mathematical modelling process follows an organized approach, starting
with Problem Identification in which the problem requires to explore through
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Figure 2 Steps involved in the formulation of mathematical model.

mathematical approaches is clearly defined. After that in Formulation the
relevant variables, parameters, and relations are identified and represented
using equations or functions. The model is simplified by providing logical
assumptions on the system, defining its application and boundaries. After
that the data is collected from experiments, observations, or existing sources
to ease estimation and validation. After creating the structure, Model Devel-
opment takes place, generating a mathematical representation using defined
equations and assumptions including differential equations, statistical mod-
els, or optimization methods. In Parameter Estimation, the values of unknown
parameters are derived from existing data which frequently uses approach
to estimate the probability. Model calibration modifies these parameters to
ensure compatibility with observed data, thus enhancing the precision of
the model. By using the validated model, simulations are performed to
predict system behaviour which enables sensitivity evaluations and providing
understanding of the dynamics of the system under various circumstances.
The reliability and precision of the model are evaluated during the Validation
and Testing phase by comparing predictions with independent data or real-
world observations. All required modifications are implemented according
to these assessments as shown in Figure 2. Finally, the Communication
of Results is important as it conveys results, and model limitations to
researchers by including detailed explanation of assumptions, methodologies,
and interpretations [3].
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Figure 3 These are few types of mathematical modelling.

1.2 Types of Mathematical Modelling

There are several important types of mathematical modelling used in various
fields as shown in Figure 3. Here are some of the key types:

1.2.1 Deterministic models
These models use mathematical equations to represent relationships between
variables. They aim to predict outcomes with certainty by assuming inputs
are known precisely. One of the well-known deterministic model is Euler’s
model [4]. It is a simple numerical approach to solve ordinary differential
equations (ODEs) with a given initial condition. It predicts the solution by
frequently moving from an initial position along a tangent line in small incre-
ments, believing that the slope of the function remains constant throughout
these increments [5]. Considering the differential equation:

dy

dx
= f(x, y)

with an initial condition y(x0) = y0. Euler’s method aims to approximate
y(x) over a specified interval by stepping forward from x0 using a small step
size h. The formula for Euler’s method is:

yn+1 = yn + h · f(xn, yn)
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where:

• yn is the approximate value of y at xn,
• h is the step size,
• f(xn, yn) is the slope at (xn, yn).

Euler’s approach has been applied in several fields. In physics, it helps
to model motion, thermodynamics, and wave propagation. The approach
enables the simulation of systems controlled by differential equations includ-
ing control systems and circuit analysis. Euler’s approach is utilised in
economics to address dynamic models in macroeconomics, primarily those
related to capital accumulation [6].

A key advantage of Euler’s approach is its simplicity. The technique is
simple to create and demands low computing power making it suitable for
educational applications and for addressing situations where high precision is
not required. Also, it offers an essential understanding of numerical methods
by serving as a starting point to more advanced approaches such as Runge-
Kutta methods [7].

1.2.2 Stochastic models
Stochastic models take into account randomness and uncertainty in the
system being modelled. They use probability distributions and statistical
methods to represent the variability in the data or processes. Example
includes Markov chains [8]. Markov chains are systems that define the
transition from one state to another in a sequential way. They are used in
several domains, including finance, biology, and computer science, to model
stochastic systems wherein the result of a process relies entirely on the current
state, independent of any previous states. The memoryless characteristic is
known as Markov property [9]. The Markov chain consists of:

• States: Distinct possible conditions the system can be in.
• Transition Probabilities: The probability of transfering from one state to

another.

For Markov chain with states S = {s1, s2, . . . , sn}, the transition prob-
ability from state si to state sj is shown by P (sj |si). The matrix containing
all these transition probabilities is known as the transition matrix P .

Transition Matrix
The transition matrix P for Markov chain with n states is an n × n matrix,
where each entry Pij represents the probability of transitioning from state si
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to state sj :

P =


P11 P12 . . . P1n

P21 P22 . . . P2n

...
...

. . .
...

Pn1 Pn2 . . . Pnn


Each row of P sums to 1 since they represent probabilities of moving

from one state to all possible states. Markov chains are widely used in
modelling systems where future states depend only on the present state
making them ideal for predicting sequential events in areas like finance,
weather forecasting, and genetics. Their ability to capture dependencies in
random processes is crucial in queueing theory for optimizing service sys-
tems and in web page ranking algorithms, like Google’s pagerank. They are
also effective in reliability analysis for estimating the life of systems [10].
Advantages of Markov chains include their mathematical simplicity, ability
to model stochastic processes, and adaptability for both theoretical studies
and practical applications across diverse fields.

1.2.3 Discrete models
Discrete models are used when the system being modelled changes in dis-
tinct steps or events rather than continuously. They deal with countable
and finite elements or states [11]. Example includes finite element analysis.
The finite element analysis model is a robust computational tool for tack-
ling complex engineering and mathematics challenges especially those are
related to physical phenomena such as structural analysis, heat transfer, and
electromagnetism. Finite element analysis decomposes a significant complex
problem into smaller more manageable elements known as finite elements.
The solutions of these distinct components are subsequently combined to
produce an approximate solution for the entire system. The general formula
for FEA can be expressed as:

KU = F

where,
K: Global stiffness matrix, representing the system’s resistance to deforma-
tion (or generalized stiffness in other physics-based contexts).
U: Vector of nodal unknowns (e.g., displacements in structural analysis,
temperatures in thermal analysis).
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F: Global force vector (or load vector) representing external forces, heat
sources, or other applied influences.
Finite element analysis offers advantages, including its versatility to han-
dle complex geometries, materials, and loading situations effortlessly. The
precision yields complete data, especially with a finer mesh detail, ensuring
correct evaluations. Also, its versatility enables it to tackle a broad spectrum
of physical issues by changing governing equations and boundary conditions.
Its application lies in structural engineering, it assesses stress, strain, and
displacement in structures such as beams, frames, and buildings in mechani-
cal engineering, it helps the design and analysis of components subjected to
stress and dynamic loads. The aerospace sector use finite element analysis to
evaluate material performance under severe conditions whereas in biomedical
engineering it simulates the stress distribution in artificial joint and human
tissues. It is essential for thermal analysis to solve heat transfer problems in
electronic devices and various systems [12].

1.2.4 Continuous models
Continuous models are used when the system being modelled changes
smoothly over time or space. They involve functions and equations defined
on continuous domains [13]. Examples include fluid dynamics models. Fluid
dynamics models describe the behavior of fluid flow (liquids and gases) and
are essential in fields such as engineering, meteorology, oceanography, and
physics. They are typically governed by the Navier-Stokes equations, which
express the conservation of mass, momentum, and energy in a fluid [14]. The
fundamental equations of fluid dynamics are derived from Newton’s second
law which is applied to fluid motion, and can be expressed as:

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ µ∇2u+ f

where:

• ρ is the fluid density,
• u is the fluid velocity vector,
• p is the pressure,
• µ is the dynamic viscosity,
• f is the external force applied to the fluid.

These equations represent:

• Conservation of Mass: Often expressed as the continuity equation,
ensuring that fluid mass is conserved.
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• Conservation of Momentum:
Describes the forces acting on fluid particles due to pressure, viscosity,
and external forces.

Fluid dynamics models are widely applied across various fields. In engi-
neering as they are essential for designing fluid systems such as pipelines,
ventilation networks, and aircraft. Meteorology and oceanography depend
upon these models to simulate atmospheric and ocean currents for weather
forecasting. In biology, fluid dynamics aids in understanding blood flow in
the cardiovascular system and airflow in respiratory systems. Environmental
science uses these models to predict the dispersion of pollutants in air and
water [15]. The strengths of fluid dynamics models include their predictive
power for simulating complex behaviors like turbulence and vortices, ver-
satility across different scales from microscopic to large-scale applications,
and flexibility in adapting to factors like temperature, pressure, and external
forces allowing for broad real-world applicability.

1.2.5 Agent-based models
Agent-based models simulate the behaviour of individual agents or entities
and their interactions within a system. These models are particularly use-
ful for studying complex systems with emergent properties [16]. Example
includes social network models. Social network models are mathematical
frameworks that analyse relationships and interactions among individuals
within a social structure. In these models nodes represent participants while
edges denote the connections between them, such as friendships or collabo-
rations. The relationships can be represented using an adjacency matrix A,
where

Aij =

{
1 if there is a connection between nodes i and j

0 otherwise

Key metrics, like the degree of a node which counts the number of direct
connections can be calculated as:

di =

n∑
j=1

Aij

where di is the degree of node i and n is the total number of nodes. Also,
betweenness centrality quantifies a node’s role in facilitating communication
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between other nodes expressed as:

CB(i) =
∑

j ̸=i ̸=k

σjk(i)

σjk

where σjk is the total number of shortest paths from node j to node k,
and σjk(i) is the number of those paths that pass through node i. These
models can also utilize metrics such as graph density D, which measures
how interconnected a network is:

D =
2E

N(N − 1)

where E is the number of edges and N is the number of nodes. Models like
pagerank can determine the importance of nodes based on their connectivity,
computed as:

PR(i) = (1− d) + d
∑

j∈M(i)

PR(j)

C(j)

where M(i) is the set of nodes that link to i, C(j) is the number of links
from node j, and d is a damping factor. These social network models find
applications in various fields, including information diffusion, community
detection, and influence propagation, offering valuable insights into social
dynamics. Their strengths lie in their ability to visually represent complex
relationships by providing quantitative measures for analysis, and adapt to
evolving social processes making them valuable tools for understanding the
problems in human interaction [17].

1.2.6 Optimization models
Optimization models aim to find the best solution or set of solutions that opti-
mize a specific objective function while satisfying a set of constraints. These
models are widely used in operations research, logistics, and decision-making
processes [18]. Example includes multi objective optimization model. The
multi objective optimization model is formulated to address challenges with
many frequently conflicting objectives, trying to find a collection of optimal
choices among these objectives rather of a singular ideal solution. In these
models, decision-makers pursue a collection of optimal solutions where
strengthening one objective results in a loss of another. In a multi objective
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optimization problem, the goal is to optimize multiple conflicting objectives
simultaneously, formulated as:

Minimize F (x) = [f1(x), f2(x), . . . , fk(x)]

subject to:

gj(x) ≤ 0, j = 1, 2, . . . ,m

hl(x) = 0, l = 1, 2, . . . , p

x ∈ S

where F (x) is the vector of k objectives, and gj(x) and hl(x) define the
feasible region S. Multi objective optimization models are crucial for solving
complex decision-making situations that need to resolve of several con-
flicting objectives. They allow decision-makers to assess decisions among
objectives, making them particularly relevant in fields such as supply chain
management (where cost, delivery time, and environmental impact require
balance), engineering design (to enhance performance, cost, and safety),
energy management (to reconcile reliability, cost, and sustainability), and
finance (to optimize risk in relation to return). These models provide a
collection of optimal choices, allowing decision-makers to choose solutions
according to their priority. Multi objective optimization provides flexibility
for handling conflicting objectives, robustness in revealing alternatives, and
changes across many industries requiring complex decision-making. This
method allows stakeholders to make wise choices that align with various
organizational or strategic goals [19].

1.2.7 Statistical models
Statistical models use statistical techniques to describe and analyse data,
identify patterns, and make predictions. These models often involve esti-
mating parameters based on observed data and making inferences about the
population [20]. Example includes Bayesian models. A Bayesian model is a
statistical structure that employs Bayesian estimation to adjust the probability
of ideas as new data arrives. Bayesian models depend on Bayes’ theorem,
which connects both the conditional and marginal probability of stochastic
events. This methodology is effective in situations that involve inadequate
or uncertain information, as it allows the continuous modification of ideas
due to new facts. Bayes’ theorem, which is stated below is the foundation of
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Bayesian models.

P (θ | D) =
P (D | θ) · P (θ)

P (D)

where:

• P (θ | D): Posterior probability of the parameter θ given the data D.
• P (D | θ): Likelihood of observing the data D given θ.
• P (θ): Prior probability of θ, reflecting beliefs about θ before observing
D.

• P (D): Marginal likelihood or evidence, the total probability of the data
under all possible parameter values.

Bayesian models offer significant advantages when they incorporate previ-
ous knowledge through previous data or expert opinions through the prior
distribution. They measure uncertainty in parameter estimates, providing
a stochastic measure of confidence. Bayesian prediction allows sequential
updating which allows model to change dynamically as new data develops,
making them suitable for real-time applications. Bayesian networks and
classifications are widely used in machine learning for supervised learning
assignments, and in medicine, they help with risk evaluation and diagnostic
modelling. Bayesian models are used in economics and finance to study
market patterns, estimation of assets, and decision-making under uncertainty.
They play an important role in natural sciences for parameter estimation in
complex structures such as environmental or genetic data [21].

1.2.8 Computational models
Computational models use numerical methods and algorithms to simulate and
solve complex mathematical problems. These models are often used when
analytical solutions are not feasible or when simulations are required to study
the behaviour of a system [22]. Example includes numerical integration meth-
ods. Numerical integration is a computational method used for calculating
the integral of a function when obtaining an analytical solution is challeng-
ing [23]. The numerical integration method is often used to approximate the
definite integral of a function f(x) over an interval [a, b]:

I =

∫ b

a
f(x) dx

The interval [a, b] is divided into n subintervals, and the function is
evaluated at specific points within these intervals to estimate the area under
the curve.
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Several methods are used for numerical integration, each with its own
advantages:

1. Trapezoidal Rule: The trapezoidal rule approximates the area under the
curve by dividing it into trapezoids [24]:

I ≈ b− a

2n

(
f(a) + 2

n−1∑
i=1

f(xi) + f(b)

)

where xi = a+ i ·∆x and ∆x = b−a
n .

2. Simpson’s Rule: Simpson’s rule improves upon the trapezoidal rule by
fitting parabolic arcs [25]

I ≈ b− a

3n

(
f(a) + 4

n∑
i=1

f(x2i−1) + 2
n−1∑
i=1

f(x2i) + f(b)

)
3. Midpoint Rule: The midpoint rule estimates the area by using the value

of the function at the midpoint of each subinterval

I ≈
n∑

i=1

f

(
xi−1 + xi

2

)
∆x

– Error Analysis
The accuracy of numerical integration methods depends on the method used,
the number of subintervals n, and the behavior of the function:

• Trapezoidal Rule Error:

ET = −(b− a)3

12n2
f ′′(ξ), ξ ∈ [a, b]

• Simpson’s Rule Error:

ES = −(b− a)5

180n4
f (4)(ξ), ξ ∈ [a, b]

– Adaptive Quadrature
Adaptive quadrature methods dynamically adjust the number of subintervals
based on the behaviour of the function by improving accuracy without exces-
sive computational cost.
Numerical integration models are crucial in numerous domains where analyt-
ical solutions are challenging or unattainable. They are extensively utilized in
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engineering to analyse structural and fluid dynamics problems allowing the
calculation of regions beneath curves that represent physical events. Numeri-
cal integration is crucial in finance for pricing complex financial contracts and
evaluating risk. These models also allow scientists to solve differential equa-
tions found in physics and biology by providing understandings of dynamic
systems. A primary advantage of numerical integration is its adaptability to
diverse functions and intervals. Also, it offers a direct method for obtain-
ing approximate solutions with adjustable precision. Numerical integration
models serve as crucial instruments for making choices and optimization in
various fields.

2 Advantages and Disadvantages of Mathematical
Modelling

There are many benefits to mathematical modelling in many areas and sub-
jects. One of the best things about it is that it can take complicated things
that happen in the real world and make them easier to understand. Models
give us an organized way to understand, analyse, and predict behaviour
by showing the complicated parts of a system or process using mathe-
matical equations. This makes things easier for researchers, engineers, and
policy-makers, so they can make better choices and solve problems faster.
For example, mathematical models can simulate different situations, which
allows involved people to figure out what might happen with different actions
or plans without having to do expensive and time-consuming tests in the
real world. This ability makes it easier to make decisions based on facts,
maximize resources, and minimize risks. You can also use mathematical
modelling to try and learn more about theories or hypotheses. Model building
and validation are repeated steps that researchers can use to change variables,
look into the connections between them, and confirm or improve ideas that
have already been proposed [26]. This repeated method helps us understand
the basic workings and changes that make a system work which often leads
to new discoveries and observations. Mathematical models are also very
useful for designing and improving complicated systems. Models are useful
in engineering and manufacturing because they help find the best shape and
structure for things assume how they will work in different situations and find
places where they can be improved. In economics and finance, models help
us look at market trends, predict what will happen, and find the best ways to
make investments [27].
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Figure 4 These are several applications of mathematical modelling.

But there are some problems with mathematical modelling as well. One
big problem with it is that it relies on simple assumptions. To make a
statistical model, you have to make some assumptions about the system you
want to study in order to keep it simple. In the real world, these assumptions
might not always be true, which could lead to results that are wrong or not
reliable. These assumptions are very important to trust the model; if they are
wrong, it can make a huge impact on the results. One more problem with
mathematical modelling is that it needs correct and complete data. Data from
experiments, observations, or published literature are used to build models.
If the data used for modelling is missing, wrong, or distorted, the model may
not be able to make accurate predictions [28]. It can be especially hard to
get accurate data when systems are complicated or when collecting data is
hard or costs a lot. So, mathematical modelling gives us strong tools for
understanding and improving systems but how well it works depends on
the assumptions it is based on and the quality of the data it uses. Some
applications of mathematical modelling is discussed in Figure 4.

3 Conclusion

Mathematical modelling is crucial across several domains and disciplines,
offering a systematic and statistical structure for evaluating and understand-
ing complex methods. It allows researchers, scientists, and engineers to
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simulate, forecast, and optimize diverse systems and processes which results
in superior decision-making, improved designs, and successful resource allo-
cation. Mathematical models allow the examination of various situations like
the identification of basic patterns and connections, and the formation of ideas
to continue research. They serve as effective tools for generating accurate
predictions assessing conceptual ideas, and making policy decisions. Also,
mathematical modelling promotes multidisciplinary work by connecting
conceptual structures with experimental practices and promoting creativity
across several fields. Mathematical modelling provides numerous benefits,
such as reducing intricate events, enhancing decision-making, validating
theories, optimizing systems, and promoting interdisciplinary collaboration.
Mathematical models serve as fundamental tools for understanding, planning,
and improving our environment. Through the use of mathematical concepts,
tools, and algorithms, researchers can acquire deep understanding into the
behaviour of complex systems that promote progress in science, technology,
and society across all sectors.
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