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Abstract

The present study adduces the dynamic properties of the propagating Love
waves passing through the irregular upper surface of transversely isotropic
poroelastic structure. The dispersion relation for scattered Love waves in
a closed form and induced reflected displacement caused by scattering of
waves have been derived. The impact of the porosity of the upper layer
and half-space on the phase velocity and also on the reflected displacement
have also been studied. The porosity of both upper layer and half-space have
significant effect on the phase velocity of Love waves. Moreover, the nature
of induced reflected displacement with the change in vertical irregularity
parameter is also analyzed. The vertical irregularity parameter (associated
with the vertical depth of irregularity) has escalating impact on the induced
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reflected displacement. The comparative analysis of reflected displacement in
three distinct scenarios of vertical irregularity has also been done.

Keywords: Poroelastic, phase velocity, porosity, and reflected displacement,
Love waves.

1 Introduction

The study of Love waves propagation has attracted many researchers of
geology, civil engineering, earthquake engineering, and geophysics etc. all
over the world. The observation of the Love waves propagation is fruitful in
diverse areas viz. material characterization, seismology and non-destructive
testing (NDT) (Baroudi, 2018). Poroelastic rocks are generally found in
the uppermost earth’s crust. The different processes like alignment of crys-
tals, layering of sedimentary beds, and orientation of grains can cause the
anisotropy in the poroelastic rocks. The anisotropy of rocks can play a
vital role to understand the structural strength affected by seismic waves.
The anisotropic medium in which axis of symmetry is vertical is called
vertical transversely isotropic medium. This type of medium exhibits the
uniform properties in a horizontal plane but having different properties in
the direction of the vertical axis. The layered rocks (viz. sandstones) show
vertical transversely isotropic behavior. Some physical phenomena such as
weathering, external loads, etc. can cause the upper irregular surface in the
poroelastic rocks. As the interaction of irregularity in upper surface and Love
waves occurs, the destructive impact due to Love waves increases. Therefore,
it is important to study the Love waves propagation in the irregular poroelastic
rock structures.

The fundamental equation for the Love waves which represents the
dispersion characteristics of Love waves in the isotropic elastic structure
has been provided by Love (1944). The investigations on the elastic waves
propagating in the fluid-saturated porous solid have been accomplished by
Biot (1962). The propagation of shear waves in an irregular anisotropic struc-
ture has been investigated by Chattopadhyay and Pal (1982). Chattopadhyay
and De (1983) explore the propagation characteristics of Love waves in a
porous medium with irregular interface. Sharma (2004) studied the propaga-
tion of plane harmonic waves in an anisotropic poroelastic and permeable
rock. The scattering characteristics for the propagation of Love waves in
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a layered isotropic elastic structure have been examined by Wolf (1970).
Negi and Singh (2019) investigated the propagation characteristics of Love
waves through upper irregular surface of layered and irregular piezoelectric
structure.

After analyzing the available literatures, it is found that several
researchers investigated the Love waves propagation in a viscoelastic,
isotropic and piezoelectric layered structures. But, the analysis of Love waves
propagation in the transversely isotropic poroelastic layered rock material
structure having irregular surface is not done yet. The behaviors of anisotropy
parameter and porosity on the phase velocity of scattered Love waves are not
studied till date. These facts serve as motivation for the authors to study the
dynamic behavior of Love waves propagation in a poroelastic layered rock
material structure having irregular surface has been done through present
study.

The closed expression for the dispersion relation associated with Love
waves interacting with the upper irregular surface of a layered poroelas-
tic rock material structure has been obtained. The influences of porosity
and anisotropic parameters associated with upper poroelastic rock layer on
the scaled phase velocity are analyzed. Reflected displacement component
caused by waves scattering is also obtained analytically. The effectuality
of anisotropic parameter and vertical irregularity parameter corresponds to
the upper poroelastic rock layer on the component of reflected displace-
ment component is studied for different shapes of irregularity in upper
surface.

2 Formulation of the Problem

Let us consider a layered poroelastic rock structure having layer of thick-
ness H . The configuration of this medium (shown in Figure 1) has been
considered in such a way that the propagation of Love waves is along
the direction of x-axis, and z-axis being assumed to be oriented vertically
downwards. Moreover, z = 0 represents the interface that connects the upper
layer and lower half space of the considered rock medium.

The irregularity in the upper poroelastic rock layer can have the following
representation (Wolf, 1970; Chattopadhyay et al., 2010; Negi and Singh,
2019)

z = zB = −H + bh0(x), (1)
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Figure 1 Geometry of the problem.

where h0(x) can be represented as

h0(x) =


0 for x ≤ −s

2
and x ≥ s

2

f0(x), for − s

2
≤ x ≤ s

2
.

(2)

the width of the irregularity in the upper layer is indicated by the variable
‘s’; b(=1) indicates the magnitude (or size) of the irregularity in upper rock
surface, and f0(x) corresponds to the shape of the irregularity in the upper
poroelastic surface.

The equations describing the propagation of Love waves in the direction
of x-axis and cause displacement in the direction of y-axis are given by (Love,
1944; Negi and Singh, 2019)

u1 = w1 = 0, v1 = v1(x, z, t), and U1 = W1 = 0, V1 = V1(x, z, t),

u2 = w2 = 0, v2 = v2(x, z, t), and U2 = W2 = 0, V2 = V2(x, z, t)

}
(3)

where (uk, vk, wk) and (U∗
k , V

∗
k ,W

∗
k ) represent displacement components

correspond to the solid and fluid phases, and refer to the directions of x-axis,
y-axis, and z-axis respectively; k = 1 is related with the upper poroelastic
rock layer while k = 2 represents the lower half-space in the studied
poroelastic rock medium.
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The stress-strain relations for Love waves propagation in poroelastic
medium can be written as (Biot, 1956, 1962)

τxx = c11εxx + c12εyy + c13εzz +M

(
∂U

∂x
+

∂V

∂y
+

∂W

∂z

)
,

τyy = c12εxx + c11εyy + c13εzz +M

(
∂U

∂x
+

∂V

∂y
+

∂W

∂z

)
,

τzz = c13εxx + c13εyy + c33εzz + J

(
∂U

∂x
+

∂V

∂y
+

∂W

∂z

)
,

τxy = τyx = c66εxy, τzy = τyz = c44εyz, τzx = τxz = c44εzx,

τ = D

(
∂U

∂x
+

∂V

∂y
+

∂W

∂z

)
+Mεxx +Mεyy + Jεzz,



(4)

where τij(i, j = x, y, z) denote the stress components; εij = 1
2(ui,j + uj,i)

represent the strain components; cij ,M , and J are the elastic constants for
the poroelastic materials and τdenotes the stress acting on the phase of fluid.

The equations of motion for the poroelastic medium with transversely
isotropy can be expressed as (Biot, 1956; Biot, 1962)

∂

∂x
τxx +

∂

∂y
τxy +

∂

∂z
τxz =

∂2

∂t2
(ρ11u+ ρ12U),

∂

∂x
τyx +

∂

∂y
τyy +

∂

∂z
τyz =

∂2

∂t2
(ρ11v + ρ12V ),

∂

∂x
τzx +

∂

∂y
τzy +

∂

∂z
τzz =

∂2

∂t2
(ρ11w + ρ12W ),

∂τ

∂x
=

∂2

∂t2
(ρ12u+ ρ22U),

∂τ

∂y
=

∂2

∂t2
(ρ12v + ρ22V ),

∂τ

∂z
=

∂2

∂t2
(ρ12w + ρ22W ),



(5)

where ρ11 is inertial coefficient associated with the mass density for the solid
phase; ρ22 signifies to the inertial coefficient associated with the mass density
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of fluid phase; ρ12 is inertial coefficient associated with the mass density for
the coupling between the fluid and solid phases.

The inertial coefficients ρ11, ρ12 and ρ22 together with ρ11 > 0, ρ22 > 0,
and ρ12 ≤ 0 can be written as (Biot, 1956; Biot, 1962)

ρ11ρ22 − ρ212 > 0, and ρ = ρ11 + 2ρ12 + ρ22 = ρs + ϕ(ρs − ρf ) (6)

where ρ represents the total mass density for the studied medium and ϕ
denotes the porosity of the studied medium; ρf and ρs denote the densities
for the fluid and solid phases respectively.

With the help of Equation (3) and stress-strain relations indicated by
Equation (4), the equations of motion in Equation (5) yields

c44
∂2vk
∂x2

+ c66
∂2vk
∂z2

= ρ′
∂2vk
∂t2

, (7)

where

ρ′ =

(
ρ11 −

(ρ12)
2

ρ22

)
.

The simplification of Equation (7) provides

∂2vk
∂x2

+
1

γ2
∂2vk
∂z2

=
1

β2

∂2vk
∂t2

, (8)

In view of harmonic variation of time i.e. eiωt for the displacement
component, we have (Wolf, 1970; Chattopadhyay et al, 2010; Negi and Singh,
2019)

vk(x, z, t) = Vk(x, z)e
iωt, (9)

where the symbol ω denotes the angular frequency; k = 1 related with the
upper poroelastic rock layer while k = 2 is linked to the half-space of the
poroelastic rock medium.

In view of Equations (8) and (9), we have

∂2V1

∂x2
+

1

γ21

∂2V1

∂z2
+K2

1V1 = 0, (10)

∂2V2

∂x2
+

1

γ22

∂2V2

∂z2
+K2

2V2 = 0, (11)

where γ21 , γ
2
2 ,K

2
1 , and K2

2 are provided in the Appendix.
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Boundary Conditions

(i) For the upper free surface at z = −H + bh0(x) where (h′0 = dh0
dx ), the

traction free boundary condition can be written as

τ1yz − γ21bh
′
0τ

1
yx = 0. (12)

(ii) At the interface z = 0, the equations for the continuity boundary
conditions can be expressed as

v1 = v2, (13)

τ1yz = τ2yz. (14)

3 Problem Solution

With the help of Equations (10)–(11), the expression for the solution for the
incident wave field may be expressed as (Wolf, 1970; Chattopadhyay et al.,
2010)

v1,in = A cos γ1s1(z +H)e−iµx, (15)

v2,in = Be−γ2s2ze−iµx, (16)

where s21 = K2
1 − µ2, s22 = K2

2 − µ2; µ = ω
cph

represents the angular wave
number for the incident wave field; cph signifies the phase velocity of Love
waves; A and B are the arbitrary coefficients correspond to the incident wave
field.

In the similar manner, Equations (10)–(11) provide the expression for
solution for scattered wave field as (Wolf, 1970; Chattopadhyay et al., 2010)

v1,scatt =

∫
c
{C(υ)e−iγ1ξ1z +D(υ)eiγ1ξ1z}e−iυxdυ, (17)

v2,scatt =

∫
c
E(υ)e−γ2ξ2ze−iυxdυ, (18)

where ξ21 = K2
1−υ2, ξ22 = υ2−K2

2 ; C(υ), D(υ) and E(υ) represent arbitrary
coefficients associated with the scattered wave field; υ = ω

cph
indicates the

angular wave number; cph denotes the phase velocity. vk,in and vk,scatt denote
the non-vanishing component for the displacement for the incident wave field
and the wave field associated with the scattering respectively; k = 1 is related
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Figure 2 Contour integral in υ-plane.

with the upper poroelastic rock layer while k = 2 is associated with the lower
half space.

The contour integral associated with the scattered wave field has been
illustrated by Figure 2 as (Wolf, 1970; Chattopadhyay et al., 2010)

With the help of Equations (15)–(18), the component for the total
displacement associated with Love waves propagation can be represented as

v1 = v1,in + v1,scatt = A cos γ1s1(z +H)e−iµx

+

∫
c
{C(υ)e−iγ1ξ1z +D(υ)eiγ1ξ1z}e−iυxdυ, (19)

v2 = v2,in + v2,scatt = Be−γ2s2ze−iµx +

∫
c
E(υ)e−γ2ξ2ze−iυxdυ. (20)

The boundary condition (13) together with Equations (19)–(20) provide

A cos γ1 s1 H = B, (21)

C(υ) +D(υ) = E(υ). (22)

In view of Equations (20) and (22), we get

v2 = A cos γ1s1He−γ2s2ze−iµx +

∫
c
E(υ)e−γ2ξ2ze−iυxdυ. (23)
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In view of Equations (19) and (23), Equation (14) provides

C(υ)−D(υ) =
1

λ
E(υ), (24)

where

λ =
iγ1ξ1c

1
66

γ2ξ2c266
.

From Equations (22) and (24), we have

E(υ) = C(υ)

(
2λ

λ+ 1

)
and D(υ) = C(υ)

(
λ− 1

λ+ 1

)
. (25)

With the help of Equation (25), Equations (19) and (23) yield

v1 = A cos γ1s1(z +H)e−iµx

+

∫
c

2C

1 + λ
{λ cos γ1ξ1z − i sin γ1ξ1z}e−iυxdυ, (26)

v2 = A cos γ1s1He−γ2s2ze−iµx +

∫
c

2C

1 + λ
{λe−γ2ξ2z}e−iυxdυ. (27)

The surface irregularity is assumed to be very small (i.e. b ≪ 1) in the
studied poroelastic layer which provides

C(υ) = bC1(υ), sin θ1bh0 ∼= θ1bh0, cos θ1bh0 ∼= 1 (b ≪ 1). (28)

Equations (26)–(28) together with Equation (12) provide

A[−iγ1µh
′
0 + γ1s

2
1h0]e

−iµx

+

∫
c

(
2

1 + λ

)
C1(υ)(i cos γ1ξ1H − λ sin γ1ξ1H)ξ1e

−iυxdυ = 0.

(29)

The inversion of Equation (29) provides

C1(υ) =
A(λ+ 1)

4π(i cos γ1ξ1H − λ sin γ1ξ1H)ξ1

×
∫ ∞

−∞
[iγ1µh

′
0 − γ1s

2
1h0]e

iy(υ−µ)dy. (30)
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In view of Equations (26), (27) and (30), we get

v1 = A cos γ1s1(z +H)e−iµx + b

∫ ∞

−∞

A

2π

[
iγ1µh

′
0 − γ1s

2
1h0
]
e−iµy

×
∫
c

{λ cos γ1ξ1z − i sin γ1ξ1z}eiυy−iυx

(i cos γ1ξ1H − λ sin γ1ξ1H)ξ1
dυdy, (31)

v2 = A cos γ1s1He−iµxe−γ2ξ2z + b

∫ ∞

−∞

A

2π
[iγ1µh

′
0 − γ1s

2
1h0]e

−iµy

×
∫
c

λe−γ2ξ2zeiυy−iυx

(i cos γ1ξ1H − λ sin γ1ξ1H)ξ1
dυdy. (32)

On rearranging Equations (31)–(32), we get

v1 = A cos γ1s1(y +H)e−iµx

+
Ab

2π

∫ ∞

−∞
[iγ1µh

′
0 − γ1s

2
1h0]e

−iµydy ×
∫
c
Γ0(υ)dυ, (33)

v2 = A cos γ1ξ1He−iµx

+
Ab

2π

∫ ∞

−∞
[iγ1µh

′
0 − γ1s

2
1h0]e

−iµydy ×
∫
c
Γ00(υ)dυ. (34)

where Γ0(υ) and Γ00(υ) are presented in the given Appendix.
The singularities in the contour integrals (31)–(32) provide

(i cos γ1ξ1H − λ sin γ1ξ1H)ξ1 = 0. (35)

On substituting γ1, ξ1 and λ into Equation (35), we get

tan

(√
c144√
c166

√
(K2

1 − υ2)

)
H =

√
c244√
c266

c266
√
(υ2 −K2

2 )
√

c144√
c166

c166
√
(K2

1 − υ2)
. (36)

Equation (36) adduces the generalized periodic wave equation associated
with the Love waves propagation in the studied poroelastic medium. In view
of Figure 2, it has been seen that Equation (36) has M roots, where M denotes
the integral multiple of [{(K2

1 −K2
2 )

H
π }+ 1] (Wolf, 1970).
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In view of Figure 2, the contour integrals in Equations (33)–(34) can be
expressed as∫

c
Γ0(υ)dυ = 2πi

∑
ResΓ0(υ)−

∫
Branch
line

Γ0(υ)dυ −
∫
c∞

Γ0(υ)dυ,

(37)∫
c
Γ00(υ)dυ = 2πi

∑
ResΓ00(υ)−

∫
Branch
line

Γ00(υ)dυ −
∫
c∞

Γ00(υ)dυ.

(38)

The contour integrals
∫
c Γ0(υ)dυ and

∫
c Γ00(υ)dυ have the residues in

the form of following expressions

Res(Γ0(υm)) =
cos γ1ξ1m(z +H)eiυm(y−x)

γ1υmH
, (39)

Res(Γ00(υm)) =
cos γ1ξ1mHe−γ2ξ2mzeiυm(y−x)

γ1υmH
, (40)

where ξkm(k = 1, 2).
By adopting the technique given by Sezawa (1935), Equations (37)–

(38) which represent the contour integrals are solved. To solve the above-
mentioned contour integrals, the contour having branch cuts as K1 and K2

that contain real axis as well as semi-circle having infinite radius in the
upper half-plane was assumed. The impact of the Love waves propagation is
considered around the uppermost surface of the studied poroelastic medium.
In the contour integrals (37)–(38), the branch line integrals contain the term of
1/z3/2, which leads to the negligible values of branch line integrals in front of
the residue term when the point of study tends to far from the irregular portion
of the upper poroelastic layer. Furthermore, the portion of contour integrals
associated with the arc at the infinite point attains zero value for the higher x
and y. In view of this, Equations (37)–(38) together with Equations (39)–(40)
provide the following expressions for the region y > x and Re(υm) < 0∫

c
Γ0(υ)dυ = 2πi

M∑
m=1

cos γ1ξ1m(z +H)eiυm(y−x)

γ1υmH
, (41)

∫
c
Γ00(υ)dυ = 2πi

M∑
m=1

cos γ1ξ1mHe−γ2ξ2mzeiυm(y−x)

γ1υmH
. (42)
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In a similar manner, for Re(υm) > 0 and y < x, we get∫
c
Γ0(υ)dυ = −2πi

M∑
m=1

cos γ1ξ1m(z +H)eiυm(y−x)

γ1υmH
, (43)

∫
c
Γ00(υ)dυ = −2πi

M∑
m=1

cos γ1ξ1mHe−γ2ξ2mzeiυm(y−x)

γ1υmH
. (44)

With the help of Equations (41)–(44), Equations (33)–(34) provide

v1 = A cos γ1s1(z +H)e−iµx − iAb
M∑

m=1

cos γ1ξ1m(z +H)

υmH

×
{
e−iµy

∫ x

−∞
(iµh′0 − s21h0)× eiυm(y−x)dy

+ eiµy
∫ ∞

x
(iµh′0 − s21h0)e

−iµy × e−iυm(y+x)dy

}
, (45)

v2 = A cos γ1s1He−γ2s2ze−iµx − iAb
M∑

m=1

cos γ1ξ1mHe−γ2s2z

υmH

×
{
e−iµy

∫ x

−∞
(iµh′o − s21h0)× ei(y−x)υmdy

+ eiµy
∫ ∞

x
(iθh′o − s21h0)e

−iθy × e−i(y+x)υmdy

}
, (46)

with Re(υm) > 0.
From the consideration of the upper layer as irregular, the expressions in

Equations (45)–(46) together with the function h0(x) defined in Equation (2)
provide

v1 = A cos γ1s1(z +H)e−iµx − iAb
M∑

m=1

cos γ1ξ1m(z +H)

υmH
eiυmx

×

{
(µυm + µ2 + s21)

∫ s
2

− s
2

h0e
−i(υm+µ)ydy

}
, (47)
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v2 = A cos γ1s1He−γ2s2ze−iµx − iAb

M∑
m=1

cos γ1ξ1mHe−γ2s2z

υmH

×

{
(µυm + µ2 + s21)

∫ s
2

− s
2

h0e
−i(υm+µ)ydy

}
. (48)

Equations (47) and (48) describe the non-zero displacement component of
Love waves that propagate through a rough surface in a layered transversely
isotropic poroelastic rock medium.

4 Particular Cases

The findings from the current analysis can be evaluated for three different
surface irregularities, namely (I) a parabolic shape, (II) a triangular notch
shape, and (III) a rectangular shape.

4.1 Case I: An Irregularity with a Parabolic Type Shape on the
Upper Surface

The equation corresponds to the parabolic type shape irregularity in the upper
surface (as shown in Figure 3) can be represented as (Chattopadhyay et al.,
2010; Negi and Singh, 2019):

h0(x) =


0, x >

s

2
, and x <

−s

2(
1− 4x2

s2

)
,

−s

2
≤ x ≤ s

2

(49)

In the upper layer of transversely isotropic poroelastic structure, the
propagation of the first mode of Love waves, which satisfies the periodic
equation (Equation (36)) for Love waves will be considered. The substitution
of µ = υ1, s1 = ξ11; m = 1 (in the case of the first mode), in Equation (47)
along with the use of Equation (51) provide

vP1,ref
A

= ib
cos γ1ξ11(z +H)

υ1H
eiυ1x(2υ21 + ξ211)

(
2 sin υ1s

s2υ31
− 2 cos υ1s

sυ21

)
(50)

Equation (50) presents the reflected displacement component result-
ing from the scattering of Love waves propagating through an irregular
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Figure 3 Parabolic type shape irregularity in upper surface.

transversely isotropic poroelastic rock structure with a parabolic-shaped
irregularity on the upper surface (mentioned by the superscript P).

4.2 Case II. An Irregularity with a Triangular Notch Type Shape
on the Upper Surface

The equation for the irregularity with a triangular notch shape (illustrated in
Figure 4) on the upper surface can be expressed as follows (Chattopadhyay
et al., 2010; Negi and Singh, 2019):

h0(x) =



0, x >
s

2
, x <

−s

2

1 +
2x

s
,

−s

2
≤ x ≤ 0

1− 2x

s
, 0 ≤ x ≤ s

2

(51)

Once again, we examine the propagation of Love waves, with the condi-
tion that only the first mode of waves propagates in the upper poroelastic layer
of the studied poroelastic rock structure, which also satisfies the generalized
periodic equation for Love waves (Equation (36)). Using Equation (51) and
also substituting µ = υ1, s1 = ξ11; m = 1 (for first mode) in Equation (47),
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Figure 4 Triangular notch type shape irregularity in upper surface.

the component of reflected displacement resulting from the scattering of Love
waves propagating through an irregular transversely isotropic poroelastic
rock structure with a triangular notch-shaped irregularity on the upper surface
of the studied poroelastic rock structure can be expressed as:

vT1,ref
A

= ib
cos γ1ξ11(z +H)

υ1H
eiυ1x(2υ21 + ξ211)

(
2 sin2 υ1s

2

sυ21

)
(52)

The superscript “T” pertains to the irregularity with a triangular notch-
shaped form on the upper surface of the studied structure.

4.3 Case III. An Irregularity with a Rectangular-shaped Form on
the Upper Surface

The irregularity with a rectangular-shaped form on the upper surface of the
studied poroelastic structure (shown in Figure 5) can be described using the
following equation (Negi and Singh, 2019):

h0(x) =


0, x >

s

2
, x <

−s

2

1,
−s

2
≤ x ≤ s

2

(53)
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Figure 5 Rectangular type shape irregularity in upper surface.

We assume that the propagation of the first mode of Love waves satis-
fies the generalized equation for periodic Love waves (Equation (36)). By
utilizing Equation (53) and substituting µ = υ1, s1 = ξ11; m = 1 (for the
first mode) in Equation (47), the component of reflected displacement in an
irregular transversely isotropic poroelastic rock medium containing surface
irregularity of rectangular type shape can be expressed as

vR1,ref
A

= ib
cos γ1ξ11(z +H)

υ1H
eiυ1x(2υ21 + ξ211)

(
sin υ1s

υ1

)
(54)

In Equation (54), irregularity in the upper surface of studied poroelastic
structure is indicated by the superscript “R”.

5 Results Validation

5.1 Verification of the Dispersion Relation

If c144 = c166 = µ1, c244 = c266 = µ2, then the relation representing the
dispersion characteristics of Love waves in Equation (36) convert to

tan

√√√√(c2ph
β2
1

− 1

)
υH =

µ2

√(
1− c2ph

β2
2

)

µ1

√(
c2ph
β2
1
− 1

) , (55)
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In Equation (55), µ1 and µ2 represent the shear modulus of upper
isotropic elastic layer and half-space respectively. The expression in Equa-
tion (55) represents the exactly same form as the classical equation for the
Love wave (Love, 1944).

5.2 The Upper Surface Irregularity Characterized by a Parabolic
Shape Results in a Reflected Displacement

For the case of c144 = c166 i.e. γ1 =

√
c144
c166

= 1, Equation (52) reduces to

vP1,ref
A

= ib
cos ξ11(z +H)

υH
eiυx(2υ2 + ξ211)

(
2 sin υs

s2υ3
− 2 cos υs

sυ2

)
. (56)

Equation (56) provides the closed-form expression for the non-vanishing
component of reflected displacement induced during the interaction of irregu-
lar upper surface and propagating Love waves in the upper layer of the layered
isotropic elastic structure. In Equation (56), the closed-form expression for
reflected displacement has the similar form as provided by Chattopadhyay
et al. (2010) by reducing the viscoelastic case to isotropic and also provided
by Wolf (1970) in the isotropic elastic structure.

5.3 The Upper Surface Irregularity Characterized by a Triangular
Notch Shape Results in a Reflected Displacement

Similarly, after substituting the values γ1 =

√
c144
c166

= 1, and υr = υ1, in

Equation (52), we have

vT1,ref
A

= ib
cos ξ11(z +H)

υH
× eiυx(2υ2 + ξ211)

(
2 sin2 υs

2

sυ2

)
. (57)

Equation (57) adduces the expression of the component of the displace-
ment caused by reflected Love waves propagating through the irregular upper
surface of an isotropic elastic structure having triangular notch type shape
irregular surface. The expression mention in Equation (57) is found to be
well matches with the results by Chattopadhyay et al. (2010) by reducing
the viscoelastic case to isotropic and also provided by Wolf (1970) for the
isotropic case.
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6 Numerical Results and Discussion

In order to compute numerically and illustrate graphically the phase velocity
of scattered Love waves and the component of the displacement because
of the reflected Love waves in a transversely isotropic poroelastic layer
overlying a transversely isotropic poroelastic substrate, the below-mentioned
physico-mechanical properties of the poroelastic rocks are considered:

(i) Properties of the upper poroelastic rock layer (Batugin and Nirenburg,
1972)

c144 = 8.30× 109 N/m2, c166 = 7.77× 109 N/m2,

ρ1 = 2022 Kg/m3, d1 =
d′1
ρ1

= 0.8.

(ii) Properties of the lower poroelastic rock material half-space (Batugin and
Nirenburg, 1972; Zhang, 2004)

c244 = 20.8× 109 N/m2, c266 = 21.3× 109 N/m2,

ρ2 = 2700 Kg/m3, d2 =
d′2
ρ2

= 0.9.

If not else explained:

(y +H)/H = 10, x/H = 10, s/H = 0.01, b/H = 0.001.

The dimensionless phase velocity and induced reflected mechanical dis-
placement caused by Love waves scattering in the upper irregular surface
of the transversely isotropic poroelastic rock medium are illustrated by
Figures 6(a) to 10.

Figure 6(a) depicts the efficacy of the anisotropic parameter on the dimen-
sionless phase velocity of the scattered Love waves. From the observation of
Figure 6(a), it is noticed that the increase in the anisotropy (associated with
the shear modulus) of upper poroelastic layer in the studied rock structure
leads to the decreasing velocity (corresponds to phase) of the scattered Love
waves.

The influence of porosity parameter on the dimensionless phase velocity
has been portrayed through Figure 6(b). It has been examined from Figure 6
that with the increase in the porosity parameter i.e. porosity decreases, the
phase velocity of the scattered Love waves decreases.
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Figure 6 Variation of the scaled phase velocity (cph/β1) against scaled wave number
(υ1H) for the distinct values of (a) anisotropy parameter (γ1 =

√
c166/c

1
44) and (b) porosity

parameter (d1) corresponds to the upper poroelastic rock layer in the studied transversely
isotropic poroelastic rock structure.
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Figure 7 Dimensionless induced reflected displacement against dimensionless width (υ1s)
for different vertical irregularity parameter (b/H) for different cases viz. (a) parabolic type
shape irregularity in upper surface [Re(vP1,ref/A)]; (b) rectangular type shape irregular-
ity in upper surface [Re(vR1,ref/A)]; (c) triangular notch type shape irregularity in upper
[Re(vT1,ref/A)] in the studied transversely isotropic poroelastic rock structure.
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Figure 8 Dimensionless induced reflected displacement [Re(vP1,ref/A)] against dimen-
sionless width (υ1s) for the different anisotropic parameter (γ1) for different cases viz.
(a) parabolic type shape irregularity in upper surface [Re(vP1,ref/A)]; (b) rectangular type
shape irregularity in upper surface [Re(vT1,ref/A)]; and (c) triangular notch type irregularity in
upper surface [Re(vR1,ref/A)] in the studied transversely isotropic poroelastic rock structure.
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Figure 9 Dimensionless induced reflected displacement [Re(v1,ref/A)] against scaled ver-
tical depth (υ1s) for different physical scenarios of the irregularity in upper surface viz.
parabolic type shape, triangular notch type shape, and rectangular type shape in the studied
transversely isotropic poroelastic rock structure.

The effectiveness of the vertical irregularity parameter (which is linked
to the depth of an irregularity on the upper rough surface), in influencing
the induced reflected displacement is shown in Figures 7(a), 7(b), and 7(c)
for different irregular shapes: parabolic, rectangular, and triangular notch,
respectively. These figures demonstrate that increasing the value of the ver-
tical irregularity parameter results in an increase in the induced reflected
displacement for all three surface irregularity shapes studied.

Figures 8(a), 8(b), and 8(c) demonstrate the impact of the anisotropic
parameter, which is linked to the shear modulus, on the reflected displacement
for different types of irregularities in the upper surface. These irregularities
include shapes such as parabolic, rectangular, and triangular notch. The
observation of these figures provides that as the anisotropic parameter of the
upper layer increases (anisotropy of upper layer prevails), the component of
reflected displacement induced because of Love waves scattering decreases
for all considered cases of irregularity in upper surface.

The comparative analysis of parabolic type shape, rectangular type shape,
and triangular notch type shape irregularity in upper surface has been accom-
plished through Figure 9. From the analysis of Figure 9, it is found that the
component of the induced reflected displacement attains maximum value
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for the situation when irregularity in upper surface is of rectangular type
shape while it becomes minimum for the situation when irregularity in upper
surface is of parabolic type shape. It is also examined that the component
of reflected displacement for the remaining situation (i.e. in the situation
when the upper surface has the irregularity of triangular notch type shape)
lies between its value for the above two cases.

7 Concluding Remarks

The phenomena of the Love waves propagation through the irregularity
in the upper poroelastic surface of transversely isotropic poroelastic rock
composite structure has been studied through the present mathematical prob-
lem. The problem has been dealt with the help of analytical procedure.
The closed form expressions for the dispersion relation (associated with the
phase velocity) and also the component of reflected displacement are derived.
Observations have been made on the effectuality of anisotropy parameter
and porosity parameter on the phase velocity of Love waves. The present
study has also investigated the impact of the vertical irregularity parameter
and anisotropic parameter on the reflected displacement. Additionally, the
following results can be considered as the main findings of this research:

1. The phase velocity corresponds to the Love waves because of the scatter-
ing phenomena degrades with the increase of anisotropy in the studied
poroelastic rock structure.

2. Scattering causes an increase in the phase velocity of Love waves when
the porosity of the upper poroelastic rock layer is reduced.

3. Reflected displacement induced because of the Love waves scattering
decreases with the increase in the anisotropic parameter (associated with
the shear modulus) for all studied shapes of irregularity in upper surface.

4. For all the irregular surface shapes studied, an increase in the induced
reflected displacement occurs as the vertical irregularity parameter
increases.

5. The displacement induced due to reflected Love waves for the situation
when the irregularity of rectangular type shape is in upper surface is
maximum while its value becomes minimum when the situation of
parabolic type shape irregularity is considered in upper surface. More-
over, the displacement because of reflected Love waves for the triangular
notch shaped irregularity in the upper surface falls between the values
obtained for the other two types of irregularities discussed earlier.
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Appendix

γ1 =

√
c144
c166

, γ2 =

√
c244
c266

, β2
1 =

c144
ρ′1

, β2
2 =

c244
ρ′2

,K2
1 =

ω2

β2
1

,K2
2 =

ω2

β2
2

,

Γ0(υ) =
{λ cos γ1ξ1z − i sin γ1ξ1z}e+iυy−iυx

(i cos γ1ξ1H − λ sin γ1ξ1H)ξ1
,

Γ00(υ) =
λe−γ2ξ2ze+iυy−iυx

(i cos γ1ξ1H − λ sin γ1ξ1H)ξ1
,

R12 =
c266
c166

, γ1 =

√
c144
c166

, γ2 =

√
c244
c266

, β2
1 =

c1R44
d′1

, β2
2 =

c2R44
d′2

,
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