T Violation in Four Flavour Neutrino Oscillation in Planck Scale

Bipin Singh Koranga* and Agam Kumar Jha

Department of Physics, Kirori Mal College (University of Delhi), Delhi-110007, India
E-mail: bipiniitb@rediffmail.com
*Corresponding Author

Received 27 August 2022; Accepted 03 September 2022; Publication 06 October 2022

Abstract

The Planck scale effects have been studied in the four flavour, we discuss the Planck scale effects in the four flavour neutrino sector on the asymmetry between T-conjugate oscillation probabilities. ΔPT=P(νανβ)-P(νβνα), for four flavor framework. In this paper, we also discuss some aspect of T violation effects in four flavor neutrino oscillation above the GUT scale.

Keywords: T violation, four flavor mixing.

1 Introduction

The deficit of neutrinos flux suggested the tiny mass of neutrins. Neutrinos are not massless and mixing in the lepton sector, this indicates that there is T/CP violation. Three flavour neutrino oscillation probability in general depends on six parameter three mixing angles θ13,θ12,θ23, one CP violating phase δ and two independent mass square difference Δ21 and Δ31, The current best fit value of neutrino mixing angle and mass square difference from the neutrino experiments to be sin2θ14=0.019, Δ41=1.70 eV2 [1]. In search of neutrino oscillation, we have obtained the three mass square difference msun2matm2mLSND2 from atmospheric, solar neutrino and LSND collabration [2, 3, 4, 5]. Earlier study of T and CP violation for neutrinos have been given by [6, 7]. In this article, we will discuss the possible violation of Time reversal symmetry in four flavour neutrino oscillation. Four Flavour Neutrino Mixing beyond the GUT scale region in Section 2. In Section 3 give the Time reversal symmetry beyond the GUT scale. In Section 4, give the conclusions.

2 Planck Scale Effects in Four Flavour Neutrino Mixing

Neutrino mass squared differences and mixing angles beyond the GUT scale are studieded in earlier paper [8, 9, 10]. Mass matrix M of neutrino is given by

M=U*diag(Mi)U, (1)

where, Mi, is the neutrino masses and Uαi is the usual mixing. Few of the parameters related to neutrino oscillation are known, the major expectation is given by the mixing elements U.

In term of the above mixing angles, the mixing matrix is

U =diag(eif1,eif2,eif3,eif4)R(θ34)R(θ24)ΔR(θ14)
=R(θ13)R(θ12)Δ*R(θ23)diag(eiα,eiβ,eiγ,1). (2)

The Dirac phase associates with the matrix Δ=diag(eiδ2,1,1,e-iδ2). This leads to T/CP violation in neutrino oscillation α, β and γ are the Majorana phases, which effects the neutrinoless double beta decay. f1, f2, f3and f4 are the charged mixing angle in the charge lepton field. New mixing matrix beyond the GUT scale is given as [8, 9, 10]

U=U(1+iδθ), (3)

where δθ is the form of hermition matrix, the first order neutrino mass square difference ΔMij, given by

ΔMij2=ΔMij2+2.0(-MjRe(mjj)+MiRe(mii)), (4)
m=μUtλU, (5)

and

μ=v2Mpl.

The changed mixing matrix is

δθij=-Im(mij)(Mi-Mj)+Re(mij)(Mi+Mj)ΔMij2. (6)

Using Equation (3), we can compute four flavour neutrino mixing angles [11] as,

sin2θ14 =|Us4|2, (7)
sin2θ24 =|Ue4|21-|Us4|2, (8)
sin2θ34 =|Uμ4|21-|Us4|2-|Us4|2, (9)
sin2θ13 =|Us3|21-|Us4|2, (10)
sin2θ12 =|Us2|21-|Us4|2-|Us3|2, (11)
sin2θ23 =|Ue3|2(1-|Us4|2)-(|Us4|2|Ue4|2)1-|Us4|2-|Ue4|2
+|Us1Ue1+Us2Ue2|2(1-|Us4|2)(1-|Us4|2-|Us3|2)(1-|Us4|2-|Ue4|2). (12)

where,

Uα1 =Uα1+iUαi(-Re(mi1)(Mi+M1)-iIm(mi1)(Mi-M1)Mi2-M12+2(MiRe(mii)-M1Re(m11).),
Uα2 =Uα2+iUαi(-Re(mi2)(Mi+M2)-iIm(mi2)(Mi-M2)Mi2-M22+2(MiRe(mii)-M4Re(m22).),
Uα3 =Uα3+iUαi(-Re(mi3)(Mi+M3)-iIm(mi3)(Mi-M3)Mi2-M32+2(MiRe(mii)-M4Re(m33).),
Uα4 =Uα4+iUαi(-Re(mi4)(Mi+M4)-iIm(mi4)(Mi-M4)Mi2-M42+2(MiRe(mii)-M4Re(m44).),
  α=s,e,μ,τ

3 Time Reversal Symmetry due to Planck Scale Effects for Four Flavour Mixing

As far on T violation effects in four flavour framework, we find that a comparison of νανβ and νβνα oscillation probability. Time reversal symmetry is violated, if

ΔPαβT=P(νανβ)-P(νβνα)0, (13)

and

(α,β)=(e,μ),(μ,τ),(τ,e).

P(νανβ) and P(νβνα) is oscillation probabilities.

CP violation effects in neutrino oscillations, we find that a comparison of neutrino oscillation νανβ and να¯νβ¯ anti-neutrino oscillation probability. CP symmetry is violated, if

ΔPαβCP=P(νανβ)-P(να¯νβ¯)0. (14)

and

(α,β)=(e,μ),(μ,τ),(τ,e).

ΔPαβT and ΔPαβCP defined in Equations (13) and (14) are equal and given by

ΔPαβT=ΔPαβCP=16J(sinΔ21sinΔ32sinΔ31). (15)

here

Δij=1.27(ΔijeV2)(LKm)(1GeVE), (16)

Δij=(mi2-mj2) is neutrino mass square difference, L is baseline length, E is energy and J is the Jarlskog determinant [13] is given by

J =Im(Ue1Ue2*Uμ1*Uμ2)
=18sin2θ12sin2θ23sin2θ13cosθ13sinδ, (17)

Let us compute ΔPαβT and ΔPαβCP for mixing U=U(1+iδθ).

ΔPαβT=ΔPαβCP=16J(sinΔ21sinΔ32sinΔ31), (18)

where J is the Jarlskog determiant for new mixing is given by [13]

J =Im(Ue1Ue2*Uμ1*Uμ2)
=Im(Ue1Ue2*Uμ1*Uμ2)+Im(i(Uμ1Uμ2)(|Ue2|2δθ12*+Ue2Ue3δθ13
-|Ue1|2δθ12*-Ue1Ue3*δθ23*)+Im(i(Ue1*Ue2)(|Uμ1|2δθ12
+Uμ1*Uμ3δθ23*-|Uμ2|2δθ12-Uμ2Uμ3*δθ13)
=J+ΔJ

The calculation of J Jarlskog determiant [12] for four flavour neutrino oscilation due to Planck scale region. which is given by replacing the neutrino matrix U by new neutrino matrix U,

Jse13 =Im((Us1+iiUsiδθi1)(Ue3+iiUeiδθi3)
×(Us3*-iiUei*δθi3*)(Ue1*-iiUei*δθi1*))
Jse24 =Im((Us2+iiUsiδθi2)(Ue4+iiUeiδθi4)
×(Us4*-iiUei*δθi4*)(Ue2*-iiUei*δθi2*))
Jse34 =Im((Us3+iiUsiδθi3)(Ue4+iiUeiδθi4)
×(Us4*-iiUei*δθi4*)(Ue3*-iiUei*δθi3*))
Jτs13 =Im((Uτ1+iiUτiδθi1)(Us3+iiUeiδθi3)
×(Uτ3*-iiUτi*δθi1*)(Us1*-iiUsi*δθi1*))
Jτs14 =Im((Uτ1+iiUτiδθi1)(Us4+iiUeiδθi4)
(Uτ4*-iiUτi*δθi4*)(Us1*-iiUsi*δθi1*))
Jτs34 =Im((Uτ3+iiUτiδθi3)(Us4+iiUeiδθi4)
(Uτ4*-iiUτi*δθi4*)(Us3*-iiUsi*δθi3*))
Jeμ23 =Im((Ue2+iiUeiδθi2)(Uμ3+iiUμiδθi3)
×(Ue3*-iiUei*δθi3*)(Uμ2*-iiUμi*δθi2*))
Jeμ24 =Im((Ue2+iiUeiδθi2)(Uμ4+iiUμiδθi4)
×(Ue4*-iiUei*δθi4*)(Uμ2*-iiUμi*δθi2*))
Jeμ34 =Im((Ue3+iiUeiδθi3)(Uμ4+iiUμiδθi4)
×(Ue4*-iiUei*δθi4*)(Uμ3*-iiUμi*δθi3*)) (19)

In term of mixing angle and Dirac phases, we can write Jarlskog determinant Jαβij due to Planck scale are,

Jse13 =116sin2θ12sin2θ13sin2θ14sin2θ24cosθ14cosθ23sinθ13sinθy
-116sin2θ12sin2θ13sin2θ14sin2θ23cosθ14cos2θ24sinθz
+18sin2θ13sin2θ14sin2θ24cos2θ12cosθ14sinθ23sin(θy-θz) (20)
Jse24 =18sin2θ12sin2θ14sin2θ24cosθ13cosθ14cosθ23sinθy
+14sin2θ13sin2θ14sin2θ12cosθ14sinθ24sinθ23sin(θy-θz)
Jse34 =18sin2θ13sin2θ14sin2θ24cosθ14sinθ23sin(θy-θz) (22)
Jτs13 =18sin2θ13sin2θ14sin2θ34cos2θ12cosθ14cosθ23cosθ24sinθx
+116sin2θ12sin2θ13sin2θ14sin2θ24cosθ14cosθ23cos2θ34sinθy
+18(cos2θ34sin2θ24-sin2θ34)
×sin2θ12sin2θ13sin2θ23cosθ13cos2θ14sinθz
-18sin2θ12sin2θ13sin2θ34cosθ13cos2θ14cos2θ23sinθ24
×sin(θx-θy)
-116sin2θ12sin2θ13sin2θ14sin2θ34cosθ14cosθ24
×sinθ13sinθ23sin(θx+θz)
+18sin2θ13sin2θ14sin2θ24cos2θ12cosθ14cos2θ34
×sinθ23sin(θy-θz)
-18sin2θ12sin2θ13sin2θ34cos2θ14cosθ13sin2θ23
×sinθ24sin(θx-θy+θz) (23)
Jτs14 =-18sin2θ13sin2θ14sin2θ34cos2θ12cosθ14cosθ23cosθ24sinθx
-18sin2θ12sin2θ13sin2θ24cos2θ14cosθ23cos2θ34sinθy
-18sin2θ12sin2θ14sin2θ34cosθ13cosθ14cosθ24sinθ23sin(θx+θz)
-18sin2θ12sin2θ13sin2θ24cos2θ14cosθ12cos2θ34
×sinθ23sin(θy-θz) (24)
Jτs34 =18sin2θ13sin2θ14sin2θ34cosθ14cosθ23cosθ24sinθx
+18sin2θ13sin2θ14sin2θ24cosθ14cos2θ34sinθ23sin(θy-θz) (25)
Jeμ23 =-14(cos2θ12cos2θ23sin2θ24-cos2θ12cos2θ24sin2θ23
+sin2θ12sin2θ14sin2θ24
+sin2θ12sin2θ23)sin2θ13sin2θ34sinθ14cosθ23cosθ24sinθx
+14(cos2θ13cos2θ34sin2θ23-cos2θ23cos2θ34sin2θ13
+sin2θ13sin2θ14sin2θ34
-sin2θ34sin2θ23)sin2θ12sin2θ24sinθ14cosθ13cosθ23cosθ24sinθy
+18(cos2θ24cos2θ34-cos2θ24sin2θ14sin2θ34
-cos2θ34sin2θ14sin2θ24+sin2θ14sin2θ24sin2θ34)
×sin2θ12sin2θ13sin2θ23cosθ13cosθ34sinθz
+14(sin2θ34cos2θ13-cos2θ24sin2θ13)sin2θ12sin2θ34
×cos2θ23sinθ13sin2θ14sinθ24sin(θx-θy)
+14(cos2θ23-sin2θ24cos2θ13-cos2θ24sin2θ13
+sin2θ13sin2θ14sin2θ24)
×sin2θ12sin2θ34cosθ13cosθ24sinθ23sin(θx+θz)
-14(cos2θ12cos2θ23cos2θ34-cos2θ12cos2θ23sin2θ34
-cos2θ23cos2θ34sin2θ12+sin2θ12sin2θ14sin2θ34
-sin2θ12sin2θ23sin2θ34)sin2θ13sin2θ24sinθ14sinθ23sin(θy-θz)
+14(cos2θ12cos2θ13cos2θ24-cos2θ12cos2θ24sin2θ13sin2θ14
-cos2θ13cos2θ24sin2θ12sin2θ14+cos2θ24sin2θ12sin2θ13sin2θ14)
×sin2θ23sin2θ34sinθ23sin(θx-θy+θz)
-14(cos2θ13cos2θ24sin2θ23-cos2θ13sin2θ23sin2θ24sin2θ14
-cos2θ24sin2θ23sin2θ13sin2θ14)
×sin2θ12sin2θ34sinθ13sinθ24sin(θx-θy+2θz)
-116sin2θ12sin2θ13sin2θ24sin2θ34cosθ13cosθ24sin2θ14
×sin(θx+θy)
+116sin2θ12sin2θ13sin2θ23sin2θ34sinθ13cosθ24
×sinθ14sin(θx-θz)
+18(cos2θ34-sin2θ34)sin2θ24sin2θ23sin2θ34sinθ13cosθ12
×sinθ24sinθ14sinθ23sin(θy-2θz)
-18(cos2θ12-sin2θ12)sin2θ13sin2θ23sin2θ34sin2θ24
×cosθ24sinθ14sinθ23sin(θx-2θy+2θz)
-18sin2θ12sin2θ23sin2θ34cosθ12cosθ23sinθ24cosθ34sinθ14
×sinθ34sin(θx-2θy+θz)
+116sin2θ12sin2θ13sin2θ24sin2θ34sinθ13sinθ14sin2θ23
×sinθ24sin(θx-2θy+3θz) (26)
Jeμ24 =116sin2θ13sin2θ14sin2θ24sin2θ34cosθ14cosθ23sinθ14sinθ24sinθx
+18sin2θ12sin2θ14sin2θ24cosθ13cosθ14cosθ23sin2θ34sinθx
-14sin2θ12sin2θ24cos2θ14cos2θ23cosθ24cosθ34sinθ13
×sinθ34sin(θx-θy)
+116sin2θ12sin2θ14sin2θ24sin2θ34cosθ13sinθ23
×sinθ24sin(θx+θy)
-18sin2θ13sin2θ14sin2θ24cosθ14sin2θ12sinθ23
×sin2θ34sin(θy-θz)
+18sin2θ12sin2θ13sin2θ34cosθ13cos2θ14sin2θ23
×sinθ24sin(θx-θy+2θz)
-14(cos2θ12-sin2θ12sin2θ13)sin2θ23sin2θ24cos2θ14cosθ34
×cosθ24sinθ34sin(θx-θy+θz) (27)
Jeμ34 =-116sin2θ13sin2θ14sin2θ24sin2θ34cosθ14cosθ23sinθ24sinθx
+18sin2θ13sin2θ14sin2θ24cosθ14sinθ23sin2θ34sin(θy-θz)
+14sin2θ23sin2θ24cos2θ13cos2θ14cosθ24cosθ34
×sinθ34sin(θz+θx-θy) (28)
θx =δ14-(δ13+δ34)
θy =δ14-(δ12+δ24)
θz =δ13-(δ12+δ23) (29)

4 Conclusions

We discussed some importance of T violation in four flavour neutrino oscillation beyond the GUT scale. We have presented four flavour neutrino mixing and possible T violation term ΔPαβT above the GUT scale. In four flavour neutrino oscillation above the GUT scale region [10]. The mixing angle changes in θ14,θ24 and θ34 above the GUT scale, are very small. But the change in θ23 is very large for large range of values of the majaorona phases α,β and γ. In four flavour mixing gives the range of mixing angle θ12=θ12±3.0, θ12=θ12±45 [12] modified mass square difference Δ21=Δ21±(1.0+0.5)×10-5 eV2 [10], for Planck scale Mpl2.0×1019 GeV. In this study, beyond the GUT scale region, we have obtained, solar mixing angle θ12, atmoshpheric angle θ23 and solar neutrino mass square difference Δ21 are more effective for Time Reversal symmetry violation. We would like to conclude that in planck scale region, two mixing angle θ12, θ23 and solar mass square difference Δ21 will more effective for Time Reversal symmetry violation.

References

[1] S. Gariazzo et al., JHEP 1706, 135 (2017).

[2] V. Barger, K. Whisnant, R.J.N. Phillips, Phys. Rev. Lett, 2084 (1980).

[3] SNO Collaboration, B. Aharmim et al., Phys. Rev. C 75, 045502 (2007).

[4] Super-Kamiokande Collaboration, J. Hosaka, et al., Phys. Rev. D 74, 32002 (2006).

[5] T2K Collaboration, Y. Itow F. Ardellier et al., arXiv:hep-ex/0106019.

[6] N. Cabibbo, Phys. Lett. B 72, 333 (1978).

[7] V. Barger, K. Whisnant, R.J.N. Phillips, Phys. Rev. Lett., 2084 (1980).

[8] B.S. Koranga, S. Uma Sankara, M. Narayan, Phys. Letts. B 665, 63–66 (2008).

[9] F. Vissani et al., Phys. Lett. B571, 209, (2003).

[10] Bipin Singh Koranga, Mod. Phys. Lett. A25, 1–6 (2010).

[11] B.S. Koranga, V.K. Nautiyal, A.K. Jha, M. Narayan, Int. J. Theor. Phys. (2021). https://doi.org/10.1007/s10773-021-04811-2.

[12] Bipin Singh Koranga and S. Uma Sankar, Electron. J. Theor. Phys. 5, 1–6 (2009).

[13] B.S. Koranga and V.K. Nautiyal, Int. J. Theor. Phys., 60, 3548–3565, 9 (2021).

Biographies

Bipin Singh Koranga is an Associate Professor in the Department of Physics, Kirori Mal College, University of Delhi. He has been with the Theoretical Physics Group, IIT Bombay since 2001 and received the Ph.D. degree in physics (neutrino masses and mixings) from the Indian Institute of Technology Bombay in 2007. He has been teaching basic courses in physics and mathematical Physics at the graduate level for the last 15 years. His research interests include the origin of universe, physics beyond the standard model, theoretical nuclear physics, quantum mechanical neutrino oscillation and few topics related to astrology. He has published over 50 scientific papers in various International Journals and three book in international publishers. His present research interest includes the neutrino mass models and related phenomenology. He is also a life member of Indian Physics Society.

Agam Kumar Jha is an Associate Professor in the Department of Physics, Kirori Mal College, University of Delhi. He earned his Ph.D. degree in physics (High Energy Particle Physics) from University of Delhi, Delhi. He has been teaching basic courses in Physics at graduate and postgraduate level for the last 18 years. He has published several scientific papers in various international journals of repute and also presented his works at national and international conferences. His research interests include the Quark Gluon Plasma (QGP) and Neutrino Physics.

Abstract

1 Introduction

2 Planck Scale Effects in Four Flavour Neutrino Mixing

3 Time Reversal Symmetry due to Planck Scale Effects for Four Flavour Mixing

4 Conclusions

References

Biographies