Stem Cell Therapy for Brain Tumors
PDF
HTML

How to Cite

Aleynik , A., & Rameshwar, P. (2015). Stem Cell Therapy for Brain Tumors. International Journal of Translational Science, 2015, 67–106. https://doi.org/10.13052/ijts2246-8765.2015.005

Abstract

Glioblastoma multiforme (GBM), the most common and lethal brain cancer,
prognosis remains bleak with a median survival of about 15 months despite
maximal surgical resection, radiotherapy, and temozolomide treatment. The
difficulty associated with safely and effectively delivering therapeutics across
the blood brain barrier (BBB) is a major challenge towards GBM treatment.
Ongoing research and clinical trials, including attempts to deliver therapeutics
within stem cells present possible solutions. The relationships between brain
cancer pathology, stem cell properties, therapeutic advantages and disadvan-
tages of various stem cell types, drug delivery methods, cancer stem cells,
gene therapy, anti-cancer vaccines, chimeric antigen receptor therapies, and
combination therapies are discussed.

https://doi.org/10.13052/ijts2246-8765.2015.005
PDF
HTML

References

Stem Cell Therapy for Brain Tumors 97

cytotoxic mesenchymal stromal cells optimized by bioluminescence

imaging of tumor and therapeutic cell response. PloS One 7 (4):e35148.

Altanerova, V., M. Cihova, M. Babic, B. Rychly, K. Ondicova,

B. Mravec, and C. Altaner. 2012. Human adipose tissue-derived

mesenchymal stem cells expressing yeast cytosinedeaminase::uracil

phosphoribosyltransferase inhibit intracerebral rat glioblastoma. Int. J.

Cancer 130 (10): 2455–2463.

Roger, M., A. Clavreul, N. Trinh Huynh, C. Passirani, P. Schiller, A.

Vessi`eres, C. Montero-Meneia, and P. Menei. 2011. Ferrociphenol lipid

nanocapsule delivery by mesenchymal stromal cells in brain tumor

therapy. Int. J. Pharm. 423 (1): 63–68.

Kim, S. M., J. S. Woo, C. H. Jeong, C. H. Ryu, J. D. Jang, and S.

S. Jeun. 2014. Potential application of temozolomide in mesenchymal

stem cell-based trail gene therapy against malignant glioma. Stem Cells

Transl. Med. 3 (2): 172–182.

Snyder, E. Y., X. O. Breakefield, K. S. Aboody, U. Herrlinger, and W.

P. Lynch, inventor The Children’s MedicalCenter Corporation Boston,

MA, USA; The General Hospital Corporation, Charlestown, MA, USA;

Northeastern Ohio Universities College of Medicine, Rootstown, OH,

USA assignee. US Patent # 7186409. Neural stem cells and use

thereof for brain tumor therapy. United States 2007.

Ahmed, A. U., B. Thaci, A. L. Tobias, B. Auffinger, L. Zhang, Y. Cheng,

C. K. Kim, C. Yunis, Y. Han, N. G. Alexiades, X. Fan, K. S. Aboody,

and M. S. Lesniak. 2012. A preclinical evaluation of neural stem cell-

based cell carrier for targeted antiglioma oncolytic virotherapy. JNCI

(13): 968–977.

Cheng, Y., R. Morshed, S. H. Cheng, A. Tobias, B. Auffinger, D. A.

Wainwright, L. Zhang, C. Yunis, Y. Han, C. T. Chen, L. W. Lo, K.

S. Aboody, A. U. Ahmed, and M. S. Lesniak. 2013. Nanoparticle-

programmed self-destructive neural stem cells for glioblastoma target-

ing and therapy. Small 9 (24): 4123–4129.

Larsen, J. M., D. R. Martin., and M. E. Byrne. 2014. Recent advances

in delivery through the blood–brain barrier. Curr. Top. Med. Chem. 14

(9): 1148–1160.

Brem, H., M. G. Ewend, S. Piantadosi, J. Greenhoot, P. C. Burger, and

M. Sisti. 1995. The safety of interstitial chemotherapy with BCNU-

loaded polymer followed by radiation therapy in the treatment of newly

diagnosed malignant gliomas: phase I trial. J. Neurooncol. 26: 111–123.

A. Aleynik and P. Rameshwar

Hart, M. G., R. Grant, R. Garside, G. Rogers, M. Somerville, and K.

Stein. 2011. Chemotherapy wafers for high grade glioma. Cochrane

Database Syst. Rev. 3. doi:10.1002/14651858.CD007294.pub2.

Chowdhary, S. A., T. Ryken, and H. B. Newton. 2015. Survival out-

comes and safety of carmustine wafers in the treatment of high-grade

gliomas: a meta-analysis. J. Neurooncol. 122 (2): 367–382.

Salahuddin, T. S., B. B. Johansson, H. Kalimo, and Y. Olsson. 1988.

Structural changes in the rat brain after carotid infusions of hyperos-

molar solutions: a light microscopic and immunohistochemical study.

Neuropathol. Appl. Neurobiol. 77: 5–13.

Burgess, A., and K. Hynynen. 2013. Noninvasive and targeted drug

delivery to the brain using focused ultrasound ACS Chem. Neurosci. 4

(4): 519–526.

Egleton, R. D., and T. P. Davis. 2005. Development of neuropeptide

drugs that cross the blood–brain barrier. Neurotherapeutics 2 (1):

–53.

Ramalho-Santos, M., S. Yoon, Y. Matsuzaki, R. C. Mulligan, and D. A.

Melton. 2002. “Stemness”: transcriptional profiling of embryonic and

adult stem cells. Science 298 (5593): 597–600.

Sun, J., A. Ramos, B. Chapman, J. B. Johnnidis, L. Le, Y. J. Ho, A.

Klein, O. Hofmann, and F. D. Camargo. 2014. Clonal dynamics of

native haematopoiesis. Nature 514 (7522): 322–327.

Ning, J., and H. Wakimoto. 2014. Oncolytic herpes simplex virus-

based strategies: toward a breakthrough in glioblastoma therapy. Front.

Microbiol. 5 (303): 1–13.

Kaufmann, J. K., and E. A. Chiocca. 2014. Glioma virus therapies

between bench and bedside. Neuro-Oncology 16 (3): 334–351.

Kaufmann, J. K., and E.A. 2014. Chiocca. Glioma virus therapies

between bench and bedside. Neuro-Oncology 16: 334–351.

Russell, S. J., K. W. Peng, and J. C. Bell. 2014. Oncolytic virotherapy.

Nat. Biotechnol. 30: 1–29.

Wollmann, G., K. Ozduman, and A. N. van den Pol. 2012. Oncolytic

virus therapy of glioblastoma multiforme – concepts and candidates.

Cancer J. 18 (1): 69–81.

Rubsam, L. Z., P. D. Boucher, P. J. Murphy, M. KuKuruga, and

D. S. Shewach. 1999. Cytotoxicity and accumulation of ganciclovir

triphosphate in bystander cells cocultured with herpes simplex virus

type 1 thymidine kinase-expressing human glioblastoma cells. Cancer

Res. 59: 669–675.

Stem Cell Therapy for Brain Tumors 99

Beck, C., S. Cayeux, S. D. Lupton, B. Dörken, and T. Blankenstein.

The thymidine kinase/ganciclovir-mediated “suicide” effect is

variable in different tumor cells. Hum. Gene Ther. 6: 1525–1530.

Colombo, F., L. Barzon, E. Franchin, M. Pacenti, V. Pinna, D. Danieli,

M. Zanusso, and G. Palù. 2005. Combined HSV-TK/IL-2 gene therapy

in patients with recurrent glioblastoma multiforme: biological and

clinical results. Cancer Gene Ther. 12: 835–848.

Perry, J. R. 2012. Thromboembolic disease in patients with high-grade

glioma. Neuro-Oncology 14 (Suppl. iv): iv73–iv80.

De Cicco, M. 2004. The prothrombotic state in cancer: pathogenic

mechanisms. Crit. Rev. Oncol. Hematol. 50 (3): 187–196.

McKie, E. A., A. R. MacLean, A.D. Lewis, G. Cruickshank, R. Ram-

pling, S.C. Barnett, P.G. Kennedy, S.M. Brown. 1996. Selective in vitro

replication of herpes simplex virus type 1 (HSV-1) ICP34.5 null mutants

in primary human CNS tumours—evaluation of a potentially effective

clinical therapy. Br J Cancer 74 (5): 745–752.

Mineta, T., S. D. Rabkin, T. Yazaki, W. D. Hunter, R. L. Martuza. 1995.

Attentuated multi-mutated herpes simplex virus-1 for the treatment of

malignant gliomas. Nat. Med. 1 (9): 938–943.

Freeman, A. I., Z. Zakay-Rones, J. M. Gomori, E. Linetsky, L. Rasooly,

E. Greenbaum, S. Rozenman-Yair, A. Panet, E. Libson, C.S. Irving, E.

Galun, and T. Seigal. 2006. Phase I/II trial of intravenous NDV-HUJ

oncolytic virus in recurrent glioblastoma multiforme. Mol. Ther. 13:

–228.

Rainov, N.G. 2000. A Phase III Clinical evaluation of herpes sim-

plex virus type 1 thymidine kinase and ganciclovir gene therapy as

an adjuvant to surgical resection and radiation in adults with previ-

ously untreated glioblastoma multiforme. Hum. Gene Ther. 11 (17):

–2401.

Yla-Herttuala, M. W. S., J. Martin, P. Warnke, P.Menei, D. Eckland, J.

Kinley, R. Kay, and Z. Ram. 2013. Adenovirus-mediated gene therapy

with sitimagene ceradenovec followed by intravenous ganciclovir for

patients with operable high-grade gliomas (ASPECT): a randomised,

open-label, phase 3 trial. Lancet Oncol. 14 (9): 822–833.

Stupp, R., W. P. Mason, M. J. van den Bent, M. Weller, B. Fisher,

M.J.B. Taphoorn, K. Belanger, A. A. Brandes, C. Marosi, U. Bogdahn,

J. Curschmann, R. C. Janzer, S. K. Ludwin, T. Gorlia, A. Allgeier, D.

Lacombe, J. Gregory Cairncross, E. Eisenhauer, and R. O. Mirimanoff.

A. Aleynik and P. Rameshwar

Radiotherapy plus concomitant and adjuvant temozolomide for

glioblastoma. N Eng. J. Med. 352: 987–996.

Barnett, S. C., L. Robertson, D. Graham, D. Allan, and R. Rampling.

Oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells trans-

formed with c-myc and H-ras form high-grade glioma after stereotactic

injection into the rat brain. Carcinogenesis 19 (9): 1529–1537.

O’Neill, D. W., S. Adams, and N. Bhardwaj. 2004. Manipulating

dendritic cell biology for the active immunotherapy of cancer. Blood

(8): 2235–2246.

Ahmed, M. S., and Y. S. Bae. 2014. Dendritic cell-based therapeutic

cancer vaccines: past, present, and future. Clin. Exp. Vaccine 3 (2):

–116.

Schreiber R. D., L. J. Old, and M. J. Smyth. 2011. Cancer Immunoedit-

ing: Integrating immunity’s roles in cancer suppression and promotion.

Science 331 (6024): 1565–1570.

Fonteneau, J. F., M. Gilliet, M. Larsson, I. Dasilva, C. Munz, Y. J. Liu,

and N. Bhardwaj. 2003.Activation of influenza virus-specific CD4+ and

CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive

immunity. Blood 101 (9): 3520–3526.

Salio, M., M. Cella, W. Vermi, F. Facchetti, M. J. Palmowski, C. L.

Smith, D. Shepherd, M. Colonna, and V. Cerundulo. 2003. Plasmacytoid

dendritic cells prime IFN-gamma-secreting melanoma-specific CD8

lymphocytes and are found in primary melanoma lesions. Eur. J.

Immunol. 33: 1052–1062.

Eshhar, Z., T. Waks, G. Cross, and D. G. Schindler. 1993. Specific

activation and targeting of cytotoxiclymphocytes through chimeric

single chains consisting of antibody-binding domains and the y or

C subunits of the immunoglobulinand T-cell receptors. PNAS 90:

–724.

Miao, H., B. D. Choi, C. M. Suryadevara, L. Sanchez-Perez, S. Yang,

G. De Leon, E. J. Sayor, R. McLendon, J. E. Herndon II, P. Healy,

G. E. Archer, D. D. Binger, L. A. Johnson, and J. H. Sampson. 2014.

EGFRvIII-specific chimeric antigen receptor T cells migrate to and

kill tumor deposits infiltrating the brain parenchyma in an invasive

xenograft model of glioblastoma. PLos One 9 (4): 1–9.

Lee, D.W., D. M. Barrett, C. Mackall, R. Orentas, and S. A. Grupp.

The future is now: chimeric antigen receptors as new targeted

therapies for childhood cancer. CCR Focus 18 (10): 2780–2790.

Stem Cell Therapy for Brain Tumors 101

Imai, C., K. Mihara, M. Andreansky, I. C. Nicholson, C. H. Pui, T. L.

Geiger, and D. Campana. 2004. Chimeric receptors with 4-1BB signal-

ing capacity provoke potent cytotoxicity against acute lymphoblastic

leukemia. Leukemia 18: 676–684.

Carpentino, C., M. C. Milone, R. Hassan, J. C. Simonet, M. Lakhal,

M. M. Suhoski, A. Varela-Rohena, K. M. Haines, D. F. Heitjan, S.

M. Albelda, R. G. Carroll, J. L. Riley, I. Pastan, and C. H. June.

Control of large, established tumor xenografts with genetically

retargeted human T cells containing CD28 and CD137 domains. PNAS

(9): 3360–3365.

Zhao, Y., Q. J. Wang, S. Yang, J. N. Kochenderfer, Z. Zheng, X. Zhong,

M. Sadelain, Z. Eshhar, S. A. Rosenberg, and R. A. Morgan. 2009.

A herceptin-based chimeric antigen receptor with modified signaling

domains leads to enhanced survival of transduced T lymphocytes and

antitumor activity. J. Immunol. 183 (9): 5563–5574.

Morgan, R. A. 2013. Risky business: target choice in adoptive cell

therapy. Blood 122 (20): 3392–3394.

Brentjens, R., R. Yeh, Y. Bernal, I. Riviere, and M. Sadelain. 2010.

Treatment of chronic lymphocytic leukemia with genetically targeted

autologous T cells: case report of an unforeseen adverse event in a phase

I clinical trial. Mol. Ther. 18 (4): 666–668.

Kochenderfer, J. N., M. E. Dudley, S. A. Feldman, W. H. Wilson, D.

E. Spaner, I. Maric, M. Stetler-Stevenson, G. Q. Phan, M. S. Hughes,

R. M. Sherry, J. C. Yang, U. S. Kammula, L. Devillier, R. Carpenter,

D. A. Nathan, R. A. Morgan, C. Laurencot, and S. A. Rosenberg. 2012.

B-cell depletion and remissions of malignancy along with cytokine-

associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-

receptor-transduced T cells. Blood 119 (12): 2709–2720.

Grupp, S. A., M. Kalos, D. Barrett, R. Aplenc, D. L. Porter, S. R.

Rheingold, D. T. Teachey, A. Chew, B. Hauck, J. Fraser Wright, M. C.

Milone, B. L. Levine, and C. H. June. 2013. chimeric antigen receptor-

modified t cells for acute lymphoid leukemia. N Engl. J. Med. 368 (16):

–1518.

Le Huu, D., T. Matsushita, G. Jin, Y. Hamaguchi, M. Hasegawa, K.

Takehara, and M. Fujimoto. 2012. IL-6 blockade attenuates the devel-

opment of murine sclerodermatous chronic graft-versus-host disease.

J. Invest. Dermatol. 132: 2752–2761.

Pule, M. A., B. Savoldo, G. D. Myers, C. Rossig, H. V. Russell, G. Dotti,

M. H. Huls, E. Liu, A. P. Gee, Z. Mei, E. Yvon, H. L. Weiss, H. Liu,

A. Aleynik and P. Rameshwar

C. M. Rooney, H. E. Heslop, and M. K. Brenner. 2008. Virus-specific

T cells engineered to coexpress tumor-specific receptors: persistence

and antitumor activity in individuals with neuroblastoma. Nat. Med. 14

(11): 1264–1270.

Hatiboglu, M. A., J. Wei, A. S. G. Wu, and A. B. Heimberger. 2010.

Immune therapeutic targeting of glioma cancer stem cells. Target Oncol.

(3): 217–227.

Barkholt, L., E. Flory, V. Jekerle, S. Lucas-Samuel, P. Ahnert, L. Bisset,

D. Büscher, W. Fibbe, A. Foussat, M. Kwa, O. Lantz, R. Maˇciulaitis,

T. Palomäki, C. K. Schneider, L. Sensebé, G. Tachdjian, K. Tarte, L.

Tosca, and P. Salmikangas. 2013. Risk of tumorigenicity in mesenchy-

mal stromal cell-based therapies–bridging scientific observations and

regulatory viewpoints. Cytotherapy 15 (7): 753–759.

Harsh, G. R., T. S. Deisboeck, D. N. Loius, J. Hilton, M. Colvin, J. S.

Silver, N. H. Qureshi, J. Kracher, D. Finkelstein, E. A. Chiocca, and

F. H. Hochberg. 2000. Thymidine kinase activation of ganciclovir in

recurrent malignant gliomas: a gene-marking and neuropathological

study. J. Neurosurg. 92 (5): 804–811.

Smith, A.G. 2001. Embryo-derived stem cells: of mice and men. Annu.

Rev. Cell Dev. Biol. 17: 435–462.

Le Blanc, K., and M. F. Pittenger. 2005. Mesenchymal stem cells:

progress toward promise. Cytotherapy 7 (1): 36–45.

Tolar, J., A. J. Nauta, M. J. Osborn, A. P. Mortari, R. T. McElmurry, S.

Bell, L. Xia, N. Zhou, M. Riddle, T. M. Schroeder, J. J. Westendorf,

R. S. McIvor, P. C. W. Hogendoorn, K. Szuhai, L. Oseth, B. Hirsch, S.

R. Yant, M. A. Kay, A. Peister, D. J. Prockop, W. E. Fibbe, and B. R.

Blazar. 2007. Sarcoma derived from cultured mesenchymal stem cells.

Stem Cells 25: 371–379.

Atsma D. E., W. E. Fibbe, and T. J. Rabelink. 2007. Opportunities

and challenges for mesenchymal stem cell-mediated heart repair. Curr.

Opin. Lipidol. 18 (6): 645–649.

Solchaga, L. A., K. J. Penick, and J. F. Welter. 2011. Chondrogenic

differentiation of bone marrow-derived mesenchymal stem cells: Tips

and Tricks. Methods Mol. Biol. 698: 253–278.

Wei X., X. Yang, Z. P. Han, F. F. Qu, L. Shao, and Y. F. Shi. 2013.

Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol.

Sinica 34 (6): 747–754.

Ryan, J. M., F. P. Barry, J. M. Murphy, and B. P. Mahon. 2005.

Mesenchymal stem cells avoid allogeneic rejection. J. Inflam. 2: 8.

Stem Cell Therapy for Brain Tumors 103

Medvedev, S. P., A. I. Shevchenk, and S. M. Zakian. 2010. Induced

pluripotent stem cells: problems and advantages when applying them

in regenerative medicine. ACTA NAT. 2 (5): 18–28.

Yamanaka, S. 2009. A FRESH Look at iPS cells. Cell 137 (1): 13–17.

Chan, T. M., J. Y. R. Chen, L. I. Ho, H. P. Lin, K. W. Hsueh, D. D. Liu,

Y. H. Chen, A. C. Hsieh, N. M. Tsai, D. Y. Hueng, S. T. Tsai, P. W. Chou,

S. Z. Lin, and H. J. Harn. 2014. ADSC Therapy in neurodegenerative

disorders. Cell Transplant. 23 (4–5): 549–557.

Desplats P., H. J. Lee, E. J. Bae, C. Patrick, E. Rockenstein, L. Crews,

B. Spencer, E. Masliah, and S. J. Lee. 2009. Inclusion formation and

neuronal cell death through neuron-to-neuron transmission of alpha-

synuclein. PNAS 106 (31): 13010–13015.

Sanberg, P. R., D. J. Eve, A. E. Willing, S. Garbuzova-Davis, J. Tan, C.

D. Sanberg, J. G. Allickson, E. L. Cruz, and C. V. Borlongan. 2011.

The treatment of neurodegenerative disorders using umbilical cord

blood and menstrual blood-derived stem cells. Cell Transplant. 20 (10):

–94.

Spinelli V., P. V. Guillot, and P. De Coppi. 2013. Induced pluripotent

stem (iPS) cells from human fetal stem cells (hFSCs). Organogenesis

(2): 101–110.

Broxmeyer, H. E. 2010. Umbilical cord transplantation: Epilogue.

Semin. Hematol. 47 (1): 97–103.

Altaner, C., V. Altanerova, M. Cihova, K. Ondicova, B. Rychly, L.

Baciak, and B. Mravec. 2014. Complete regression of glioblastoma

by mesenchymal stem cells mediated prodrug gene therapy simulating

clinical therapeutic scenario. International J. Cancer 134 (6): 1458–

Egleton, R. D., and T. P. Davis. 2005. Development of neuropeptide

drugs that cross the blood–brain barrier. NeuroRx 2 (1): 44–53.

Qin, J., X. Yang, J. Mi, J. Wang, J. Hou, T. Shen, Y. Li, B. Wang,

X. Li, and W. Zhu. 2014. Enhanced antidepressant-like effects of the

macromolecule trefoil factor 3 by loading into negatively charged

liposomes. Int. J. Nanomed. 9: 5247–5257.

Wang, X., P. Liu, W. Yang, L. Li, P. Li, Z. Liu, Z. Zhuo, and Y.

Gao. Microbubbles coupled to methotrexate-loaded liposomes for

ultrasound-mediated delivery of methotrexate across the blood–brain

barrier. Int. J. Med.; 9: 4899–4909.

Steiniger, S. C., J. Kreuter, A. S. Khalansky, I. N. Skidan, A. I.

Bobruskin, Z. S. Smirnova, S. E. Severin, R. Uhl, M. Kock, K. D.

A. Aleynik and P. Rameshwar

Geiger, and S. E. Gelperina. Chemotherapy of glioblastoma in rats using

doxorubicin-loaded nanoparticles. Int. J. Cancer. 109 (5): 759–767.

Jones, A. R., and E. V. Shusta. 2007. Blood–Brain Barrier Transport of

Therapeutics via Receptor-Mediation. Pharm. Res. 24 (9): 1759–1771.

Pardridge, W. M. 2001. Brain Drug Targeting and Gene Technologies.

Jpn. J. Pharmacol. 87 (2): 97–103.

Wait, S. D., R. S. Prabhu, S. H. Burri, T. G. Atkins, and A. L. Asher.

Polymeric drug delivery for the treatment of glioblastoma. Neuro-

Oncology 17 (2): ii9–ii23.

Larsen, J.M., D. R. Martin, and M. E. Byrne. 2014. Recent advances

in delivery through the blood–brain barrier. Curr. Top. Med. Chem. 14

(9): 1148–1160.

Jewell, C.M., S. C. Bustamante Lopez, and D. J. Irvine. 2011. In

situ engineering of the lymph node microenvironment via intranodal

injection of adjuvant-releasing polymer particles. PNAS 108 (38):

–15750.

Burgess, A., C.A. Ayala-Grosso, M. Ganguly, J.F. Jordão, I. Aubert, K.

Hynynen. 2011. Targeted Delivery of Neural Stem Cells to the Brain

Using MRI-Guided Focused Ultrasound to Disrupt the Blood–Brain

Barrier. PLoS ONE 6 (11): e27877.

Balyasnikova, I. V., M. S. Prasol, S. D. Ferguson, Y. Han, A. U. Ahmed,

M. Gutova,A. L. Tobias, D. Mustafi, E. Rincon, L. Zhang, K. S.Aboody,

and M. S. Lesniak. 2014. Intranasal delivery of mesenchymal stem cells

significantly extends survival of irradiated mice with experimental brain

tumors. Mol. Ther. 22: 140–148.

Sampson, J. H., K. D. Alpade, G. E. Archer, A. Coan, A. Desjardins,

A. H. Friedman, H. S. Friedman, M. R. Gilbert, J. E. Herndon, R. E.

McLendon, D. A. Mitchell, D. A. Reardon, R. Sawaya, R. Schmittling,

W. Shi, J. J. Vredenburgh, D. D. Bigner, and A. B. Heimberger. 2011.

Greater chemotherapy-induced lymphopenia enhances tumor-specific

immune responses that eliminate EGFRvIII-expressing tumor cells in

patients with glioblastoma. Neuro-Oncology 13 (3): 324–333.

Phuphanich, S., C. J. Wheeler, J. D. Rudnick, M. Mazer, H. Q. Wang,

M. A. Nuno, J. E. Richardson, X. Fan, J. Ji, R.M. Chu, J. G. Bender, E.

S. Hawkins, C. G. Patil, K. L. Black, and J. S. Yu. 2013. Phase I trial

of a multi-epitope-pulsed dendritic cell vaccine for patients with newly

diagnosed glioblastoma. Cancer Immunol. Immunother. 62: 125–135.

Fadul, C. E., J. L. Fisher, T. H. Hampton, E. C. Lallana, Z. Li, J.

Gui, Z. M. Szczepiorkowki, T. D. Tosteson, C. H. Rhodes, H. A.

Stem Cell Therapy for Brain Tumors 105

Wishart, L. D. Lewis, and M. S. Ernstoff. 2011. Immune response

in patients with newly diagnosed glioblastoma multiforme treated

with intranodal autologous tumor lysate-dendritic cell vaccination after

radiation chemotherapy. J. Immunother. 34 (4): 382–389.

Shand, N., F. Weber, L. Mariani, M. Bernstein, A. Gianella-Borradi,

Z. Long, A. G. Sorensen, and N. Barbier. 1999. A phase 1–2 clinical

trial of gene therapy for recurrent glioblastoma multiforme by tumor

transduction with the herpes simplex thymidine kinase gene followed

by ganciclovir. Hum. Gene Ther. 10 (14): 2325–2335.

Markert, J. M., P. G. Liechty, W. Wang, S. Gaston, E. Braz, M. Karrasch,

L. B. Nabors, M. Markiewicz, A. D. Lakeman, C. A. Palmer, J. N.

Parker, R. J. Whitley, G. Y. Gillespie. 2009. Phase Ib trial of mutant

herpes simplex virus G207 inoculated pre-and post-tumor resection for

recurrent GBM. Mol. Ther. 17 (1): 199–207

Downloads

Download data is not yet available.