Novel View of the Adult Stem Cell Compartment – of Germline and Parental Imprinting
PDF
HTML

Keywords

Adult stem cells, primordial germ cells, imprinted genes, Igf2–H19 locus, stem cell quiescence, tissue regeneration, tumorigenesis.

How to Cite

Ratajczak, M. Z., Schneider, G., & Suszynska, M. (2015). Novel View of the Adult Stem Cell Compartment – of Germline and Parental Imprinting. International Journal of Translational Science, 2015, 1–22. https://doi.org/10.13052/ijts2246-8765.2015.002

Abstract

Evidence has accumulated that adult tissues contain developmentally early
stem cells that remain in a dormant state as well as stem cells that are more
proliferative, supplying tissue-specific progenitor cells and thus playing a
more active role in the turnover of adult tissues. Interestingly, evidence has
accumulated in parallel that these most primitive, dormant, adult stem cells
are regulated by epigenetic changes in the expression of certain parentally
imprinted genes, a molecular phenomenon previously described for keeping
primordial germ cells in a quiescent state. Specifically, the most primitive
quiescent stem cells in bone marrow that can be committed to the hematopoi-
etic lineage show erasure of imprinting at the Igf2–H19 locus, which keeps
them in a quiescent state in a similar manner as primordial germ cells. Similar
changes in expression of parentally imprinted genes may also play a role in
the quiescence of dormant adult stem cells present in other non-hematopoietic
tissues. However, this possibility requires further study

https://doi.org/10.13052/ijts2246-8765.2015.002
PDF
HTML

References

A. P. Beltrami, D. Cesselli, N. Bergamin et al. “Multipotent cells can

be generated in vitro from several adult human organs (heart, liver, and

bone marrow).” Blood 110, 3438–3446. (2007).

G. D’Ippolito, S. Diabira, G. A. Howard et al. “Marrow-isolated adult

multilineage inducible (MIAMI) cells, a unique population of postnatal

young and old human cells with extensive expansion and differentiation

potential.” J. Cell Sci. 117(Pt. 14), 2971–2981. (2004).

G. Kogler, S. Sensken, J. A. Airey et al. “A new human somatic stem

cell from placental cord blood with intrinsic pluripotent differentiation

potential.” J. Exp. Med. 200, 123–135. (2004).

Y. Jiang, B. N. Jahagirdar, R. L. Reinhardt et al. “Pluripotency of

mesenchymal stem cells derived from adult marrow.” Nature 418, 41–49.

(2002).

T. Y. Ling, M. D. Kuo, C. L. Li et al. “Identification of pulmonary

Oct-4+ stem/progenitor cells and demonstration of their susceptibility

Novel View of The Adult Stem Cell Compartment 13

to SARS coronavirus (SARS-CoV) infection in vitro.” Proc. Natl. Acad.

Sci. U.S.A. 103, 9530–9535. (2006).

B. E. Petersen, W. C. Bowen, K. D. Patrene et al. “Bone marrow as a

potential source of hepatic oval cells.” Science 284, 1168–1170. (1999).

F. Anjos-Afonso, and D. Bonnet. “Nonhematopoietic/endothelial SSEA-

+ cells define the most primitive progenitors in the adult murine bone

marrow mesenchymal compartment.” Blood 109, 1298–1306. (2007).

H. Yu, D. Fang, S. M. Kumar et al. “Isolation of a novel population of

multipotent adult stem cells from human hair follicles.” Am. J. Pathol.

, 1879–1888. (2006).

L. Li, and H. Clevers. “Coexistence of quiescent and active adult stem

cells in mammals.” Science 327, 542–545. (2010).

T. Asahara, T. Murohara, A. Sullivan et al. “Isolation of putative

progenitor endothelial cells for angiogenesis.” Science 275, 964–967.

(1997).

S. Wakao, M. Kitada, Y. Kuroda et al. “Multilineage-differentiating

stress-enduring (Muse) cells are a primary source of induced pluripotent

stem cells in human fibroblasts.” Proc. Natl. Acad. Sci. U.S.A. 108,

–9880. (2011).

M. Serafini, S. J. Dylla, M. Oki et al. “Hematopoietic reconstitution by

multipotent adult progenitor cells: precursors to long-term hematopoietic

stem cells.” J. Exp. Med. 204, 129–139. (2007).

D. J. Prockop. “Marrow stromal cells as stem cells for nonhematopoietic

tissues.” Science 276, 71–74. (1997).

M. Kritzenberger, and K. H. Wrobel. “Histochemical in situ identi-

fication of bovine embryonic blood cells reveals differences to the

adult haematopoietic system and suggests a close relationship between

haematopoietic stem cells and primordial germ cells.” Histochem Cell

Biol. 121, 273–289. (2004).

T. Ohtaka, Y. Matsui, and M. Obinata. “Hematopoietic development of

primordial germ cell-derived mouse embryonic germ cells in culture.”

Biochem. Biophys. Res. Commun. 260, 475–482. (1999).

I. N. Rich. “Primordial germ cells are capable of producing cells of the

hematopoietic system in vitro.” Blood 86, 463–472. (1995).

A. Saito, K. Watanabe, T. Kusakabe et al. “Mediastinal mature ter-

atoma with coexistence of angiosarcoma, granulocytic sarcoma and a

hematopoietic region in the tumor: a rare case of association between

hematological malignancy and mediastinal germ cell tumor.” Pathol.

Int. 48, 749–753. (1998).

M. Z. Ratajczak et al.

D. Nakada, H. Oguro, B. P. Levi et al. “Oestrogen increases haematopoi-

etic stem-cell self-renewal in females and during pregnancy.” Nature 505,

–558. (2014).

E. Carreras, S. Turner, V. Paharkova-Vatchkova et al. “Estradiol acts

directly on bone marrow myeloid progenitors to differentially regu-

late GM-CSF or Flt3 ligand-mediated dendritic cell differentiation.”

J. Immunol. 180, 727–738. (2008).

M. Maggio, P. J. Snyder, G. P. Ceda et al. “Is the haematopoietic effect

of testosterone mediated by erythropoietin? The results of a clinical trial

in older men.” Andrology 1, 24–28. (2013).

K. S. Mierzejewska, E. Borkowska S. J. Suszynska, M. Maj, M. Rata-

jczak, J. Kucia, M. Ratajczak, M. Z. “Novel In Vivo Evidence That Not

Only Androgens But Also Pituitary Gonadotropins and Prolactin Directly

Stimulate Murine Bone Marrow Stem Cells – Implications For Potential

Treatment Strategies In Aplastic Anemias,” in 55th ASH Annual Meeting

and Exposition. New Orleans, LA. (2013).

M. Z. Ratajczak, M. Majka, M. Kucia et al. “Expression of functional

CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-

derived fibroblasts is associated with the presence of both muscle

progenitors in bone marrow and hematopoietic stem/progenitor cells in

muscles.” Stem Cells 21, 363–371. (2003).

M. Z. Ratajczak, M. Kucia, R. Reca et al. “Stem cell plasticity revis-

ited: CXCR4-positive cells expressing mRNA for early muscle, liver

and neural cells ’hide out’ in the bone marrow.” Leukemia 18, 29–40.

(2004).

M. Z. Ratajczak, B. Machalinski, W. Wojakowski et al. “A hypothesis

for an embryonic origin of pluripotent Oct-4(+) stem cells in adult bone

marrow and other tissues”, Leukemia 21, 860–867. (2007).

D. M. Shin, E. K. Zuba-Surma, W. Wu et al. “Novel epigenetic mech-

anisms that control pluripotency and quiescence of adult bone marrow-

derived Oct4(+) very small embryonic-like stem cells.” Leukemia 23,

–2051. (2009).

W. Reik, and J. Walter. “Genomic imprinting: parental influence on the

genome.” Nat. Rev. Genet. 2, 21–32. (2001).

M. Pick, Y. Stelzer, O. Bar-Nur et al. “Clone- and gene-specific aberra-

tions of parental imprinting in human induced pluripotent stem cells.”

Stem Cells 27, 2686–2690. (2009).

A. McLaren. “Development of primordial germ cells in the mouse.”

Andrologia 24, 243–247. (1992).

Novel View of The Adult Stem Cell Compartment 15

A. McLaren. “Primordial germ cells in the mouse.” Dev. Biol. 262, 1–15.

(2003).

K. Molyneaux, and C. Wylie. “Primordial germ cell migration.” Int.

J. Dev. Biol. 48, 537–544. (2004).

M. P. De Miguel, F. Arnalich Montiel, P. Lopez Iglesias et al. “Epiblast-

derived stem cells in embryonic and adult tissues.” Int. J. Dev. Biol. 53,

–1540. (2009).

H. K. Mikkola, and S. H. Orkin. “The journey of developing hematopoi-

etic stem cells.” Development 133, 3733–3744. (2006).

J. Palis. “Primitive and definitive erythropoiesis in mammals.” Front.

Physiol. 5:3. (2014).

A. Ivanovs, S. Rybtsov, L. Welch et al. “Highly potent human

hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-

mesonephros region.” J. Exp. Med. 208, 2417–2427. (2011).

J. Zhang, W. L. Tam, G. Q. Tong et al. “Sall4 modulates embryonic stem

cell pluripotency and early embryonic development by the transcriptional

regulation of Pou5f1.” Nat. Cell Biol. 8, 1114–1123. (2006).

C. Gao, N. R. Kong, A. Li et al. “SALL4 is a key transcription regulator

in normal human hematopoiesis.” Transfusion 53, 1037–1049. (2013).

M. Suszynska, A. Poniewierska-Baran, P. Gunjal et al. “Expression of the

erythropoietin receptor by germline-derived cells – further support for a

potential developmental link between the germline and hematopoiesis.”

J. Ovarian. Res. 7, 66. (2014).

K. Woodruff, N. Wang, W. May et al. “The clonal nature of mediastinal

germ cell tumors and acute myelogenous leukemia. A case report and

review of the literature.” Cancer Genet. Cytogenet. 79, 25–31. (1995).

R. S. Chaganti, M. Ladanyi, F. Samaniego et al. “Leukemic differentia-

tion of a mediastinal germ cell tumor.” Genes Chromosomes Cancer 1,

–87. (1989).

C. R. Nichols, R. Hoffman, L. H. Einhorn et al. “Hematologic malignan-

cies associated with primary mediastinal germ-cell tumors.” Ann. Int.

Med. 102, 603–609. (1985).

M. Yoshimoto, T. Heike, H. Chang et al. “Bone marrow engraftment but

limited expansion of hematopoietic cells from multipotent germline stem

cells derived from neonatal mouse testis.” Exp. Hematol. 37, 1400–1410.

(2009).

Y. Miwa, T. Atsumi, N. Imai et al. “Primitive erythropoiesis of mouse ter-

atocarcinoma stem cells PCC3/A/1 in serum-free medium.” Development

, 543–549. (1991).

M. Z. Ratajczak et al.

D. Orlic, J. Kajstura, S. Chimenti et al. “Bone marrow cells regenerate

infarcted myocardium.” Nature 410, 701–705. (2001).

M. A. LaBarge, and H. M. Blau. “Biological progression from adult bone

marrow to mononucleate muscle stem cell to multinucleate muscle fiber

in response to injury.” Cell 111, 589–601. (2002).

J. R. Sanchez-Ramos. “Neural cells derived from adult bone marrow and

umbilical cord blood.” J. Neurosci. Res. 69, 880–893. (2002).

E. L. Herzog, L. Chai, and D. S. Krause. “Plasticity of marrow-derived

stem cells.” Blood 102, 3483–3493. (2003).

D. C. Hess, T. Abe, W. D. Hill et al. “Hematopoietic origin of microglial

and perivascular cells in brain.” Exp. Neurol. 186, 134–144. (2004).

S. Corti, F. Locatelli, C. Donadoni et al. “Neuroectodermal and microglial

differentiation of bone marrow cells in the mouse spinal cord and sensory

ganglia.” J. Neurosci. Res. 70, 721–733. (2002).

N. Terada, T. Hamazaki, M. Oka et al. “Bone marrow cells adopt

the phenotype of other cells by spontaneous cell fusion.” Nature 416,

–545. (2002).

G. Vassilopoulos, and D. W. Russell. “Cell fusion: an alternative to stem

cell plasticity and its therapeutic implications.” Curr. Opin. Genet. Dev.

, 480–485. (2003).

E. W. Scott. “Stem cell plasticity or fusion: two approaches to targeted

cell therapy.” Blood Cells Mol. Dis. 32, 65–67. (2004).

L. M. Eisenberg, and C. A. Eisenberg. “Stem cell plasticity, cell

fusion, and transdifferentiation.” Birth Defects Res. C Embryo Today 69,

–218. (2003).

M. Kucia, M. Halasa, M. Wysoczynski et al. “Morphological and

molecular characterization of novel population of CXCR4+ SSEA-4+

Oct-4+ very small embryonic-like cells purified from human cord blood:

preliminary report.” Leukemia 21, 297–303. (2007).

M. P. Vacanti, A. Roy, J. Cortiella et al. “Identification and initial

characterization of spore-like cells in adult mammals.” J. Cell Biochem.

, 455–460. (2001).

K. Le Blanc, and M. Pittenger. “Mesenchymal stem cells: progress toward

promise.” Cytotherapy 7, 36–45. (2005).

Y. Kuroda, S. Wakao, M. Kitada et al. “Isolation, culture and evalua-

tion of multilineage-differentiating stress-enduring (Muse) cells.” Nat.

Protoc. 8, 1391–1415. (2013).

D. Cesselli, A. P. Beltrami, S. Rigo et al. “Multipotent progenitor cells are

present in human peripheral blood.” Circ. Res. 104, 1225–1234. (2009).

Novel View of The Adult Stem Cell Compartment 17

S. M. Guthrie, L. M. Curtis, R. N. Mames et al. “The nitric oxide pathway

modulates hemangioblast activity of adult hematopoietic stem cells.”

Blood 105, 1916–1922. (2005).

S. Parte, D. Bhartiya, J. Telang et al. “Detection, characterization, and

spontaneous differentiation in vitro of very small embryonic-like putative

stem cells in adult mammalian ovary.” Stem Cells Dev. 20, 1451–1464.

(2011).

D. Bhartiya, S. Kasiviswananthan, and A. Shaikh. “Cellular origin of

testis-derived pluripotent stem cells: a case for very small embryonic-like

stem cells.” Stem Cells Dev. 21, 670–674. (2012).

R. S. Taichman, Z. Wang, Y. Shiozawa et al. “Prospective identification

and skeletal localization of cells capable of multilineage differentiation

in vivo.” Stem Cells Dev. 19, 1557–1570. (2010).

A. M. Havens, Y. Shiozawa, Y. Jung et al. “Human very small embryonic-

like cells generate skeletal structures, in vivo.” Stem Cells Dev. 22,

–630. (2013).

D. M. Shin, R. Liu, W. Wu et al. “Global gene expression analysis of

very small embryonic-like stem cells reveals that the Ezh2-dependent

bivalent domain mechanism contributes to their pluripotent state.”

Stem Cells Dev. 21, 1639–1652. (2012).

D. M. Shin, R. Liu, I. Klich et al. “Molecular characterization of isolated

from murine adult tissues very small embryonic/epiblast like stem cells

(VSELs).” Mol. Cells. 29, 533–538. (2010).

D. M. Shin, R. Liu, I. Klich et al. “Molecular signature of adult bone

marrow-purified very small embryonic-like stem cells supports their

developmental epiblast/germ line origin.” Leukemia 24, 1450–1461.

(2010).

M. Kucia, W. Wu, and M. Z. Ratajczak. “Bone marrow-derived very small

embryonic-like stem cells: their developmental origin and biological

significance.” Dev. Dyn. 236, 3309–3320. (2007).

P. W. Dyce, J. Liu, C. Tayade et al. “In vitro and in vivo germ line poten-

tial of stem cells derived from newborn mouse skin.” PLoS ONE 6:

e20339. (2011).

S. H. Song, B. M. Kumar, E. J. Kang et al. “Characterization of porcine

multipotent stem/stromal cells derived from skin, adipose, and ovarian

tissues and their differentiation in vitro into putative oocyte-like cells.”

Stem Cells Dev. 20, 1359–1370. (2011).

M. Z. Ratajczak et al.

R. Shirazi, A. H. Zarnani, M. Soleimani et al. “BMP4 can generate

primordial germ cells from bone-marrow-derived pluripotent stem cells.”

Cell. Biol. Int. 36, 1185–1193. (2012).

J. Johnson, J. Bagley, M. Skaznik-Wikiel et al. “Oocyte generation in

adult mammalian ovaries by putative germ cells in bone marrow and

peripheral blood.” Cell 122, 303–315. (2005).

K. Selesniemi, H. J. Lee, T. Niikura et al. “Young adult donor bone

marrow infusions into female mice postpone age-related reproductive

failure and improve offspring survival.” Aging (Albany NY) 1, 49–57.

(2009).

K. Nayernia, J. H. Lee, N. Drusenheimer et al. “Derivation of male germ

cells from bone marrow stem cells.” Lab. Invest. 86, 654–663. (2006).

Y. T. Heo, S. H. Lee, J. H. Yang et al. “Bone marrow cell-mediated

production of transgenic chickens.” Lab. Invest. 91, 1229–1240. (2011).

S. H. Kassmer, H. Jin, P. X. Zhang et al. “Very small embryonic-like stem

cells from the murine bone marrow differentiate into epithelial cells of

the lung.” Stem Cells 31, 2759–2766. (2013).

J. Ratajczak, M. Wysoczynski, E. Zuba-Surma et al. “Adult murine bone

marrow-derived very small embryonic-like stem cells differentiate into

the hematopoietic lineage after coculture over OP9 stromal cells.” Exp.

Hematol. 39, 225–237. (2011).

J. Ratajczak, E. Zuba-Surma, I. Klich et al. “Hematopoietic differentia-

tion of umbilical cord blood-derived very small embryonic/epiblast-like

stem cells.” Leukemia 25, 1278–1285. (2011).

B. Dawn, S. Tiwari, M. J. Kucia et al. “Transplantation of bone marrow-

derived very small embryonic-like stem cells attenuates left ventricular

dysfunction and remodeling after myocardial infarction.” Stem Cells 26,

–1655. (2008).

E. K. Zuba-Surma, Y. Guo, H. Taher et al. “Transplantation of expanded

bone marrow-derived very small embryonic-like stem cells (VSEL-SCs)

improves left ventricular function and remodelling after myocardial

infarction”, J. Cell Mol. Med. 15, 1319–1328. (2011).

J. H. Wu, H. J. Wang, Y. Z. Tan et al. “Characterization of rat very small

embryonic-like stem cells and cardiac repair after cell transplantation for

myocardial infarction.” Stem Cells Dev. 21, 1367–1379. (2012).

Z. Chen, X. Lv, H. Dai et al. “Hepatic Regenerative Potential of Mouse

Bone Marrow Very Small Embryonic-Like Stem Cells.” J. Cell Physiol.

(2014).

Novel View of The Adult Stem Cell Compartment 19

M. Z. Ratajczak, D. M. Shin, R. Liu et al. “Very small embryonic/epiblast-

like stem cells (VSELs) and their potential role in aging and organ

rejuvenation–an update and comparison to other primitive small stem

cells isolated from adult tissues.” Aging (Albany NY) 4, 235–246. (2012).

M. Pannetier, and R. Feil. “Epigenetic stability of embryonic stem cells

and developmental potential.” Trends Biotechnol. 25, 556–562. (2007).

K. Delaval, and R. Feil. “Epigenetic regulation of mammalian genomic

imprinting.” Curr. Opin. Genet. Dev. 14, 188–195. (2004).

M. S. Bartolomei, and A. C. Ferguson-Smith. “Mammalian genomic

imprinting.” Cold Spring Harb Perspect. Biol. 3. (2011).

R. N. Plasschaert, and M. S. Bartolomei. “Genomic imprinting in devel-

opment, growth, behavior and stem cells.” Development 141, 1805–1813.

(2014).

A. Keniry, D. Oxley, P. Monnier et al. “The H19 lincRNA is a develop-

mental reservoir of miR-675 that suppresses growth and Igf1r.” Nat. Cell

Biol. 14, 659–665. (2012).

G. Durcova-Hills, F. Tang, G. Doody et al. “Reprogramming primordial

germ cells into pluripotent stem cells.” PLoS ONE 3:e3531. (2008).

M. Kucia, M. Masternak, R. Liu et al. “The negative effect of prolonged

somatotrophic/insulin signaling on an adult bone marrow-residing pop-

ulation of pluripotent very small embryonic-like stem cells (VSELs).”

Age (Dordr) 35, 315–330. (2013).

A. Venkatraman, X. C. He, J. L. Thorvaldsen et al. “Maternal imprinting at

the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence.”

Nature 500, 345–349. (2013).

T. Kono, Y. Obata, Q. Wu et al. “Birth of parthenogenetic mice that can

develop to adulthood.” Nature 428, 860–864. (2004)

Downloads

Download data is not yet available.